
Stolen Risks of Models with Security Properties
Yue Qin

Indiana University Bloomington

Bloomington, Indiana, USA

qinyue@iu.edu

Zhuoqun Fu

Tsinghua University

Beijing, China

fzq20@mails.tsinghua.edu.cn

Chuyun Deng

Tsinghua University

Beijing, China

dengcy20@mails.tsinghua.edu.cn

Xiaojing Liao

Indiana University Bloomington

Bloomington, Indiana, USA

xliao@indiana.edu

Jia Zhang

Tsinghua University

Beijing, China

zhangjia@cernet.edu.cn

Haixin Duan

Tsinghua University&Zhongguancun

Laboratory

Beijing, China

duanhx@tsinghua.edu.cn

ABSTRACT
Verifiable robust machine learning, as a new trend ofML security de-

fense, enforces security properties (e.g., Lipschitzness, Monotonic-

ity) on machine learning models and achieves satisfying accuracy-

security trade-off. Such security properties identify a series of eva-

sion strategies of ML security attackers and specify logical con-

straints on their effects on a classifier (e.g., the classifier is mono-

tonically increasing along some feature dimensions). However, little

has been done so far to understand the side effect of those security

properties on the model privacy.

In this paper, we aim at better understanding the privacy impacts

on security properties of robust ML models. Particularly, we report

the first measurement study to investigate the model stolen risks

of robust models satisfying four security properties (i.e., LocalIn-

variance, Lipschitzness, SmallNeighborhood, and Monotonicity).

Our findings bring to light the factors that influence model stealing

attacks and defense performance on models trained with security

properties. In addition, to train an ML model satisfying goals in ac-

curacy, security, and privacy, we propose a novel technique, called

BoundaryFuzz, which introduces a privacy property into verifiable

robust training frameworks to defend against model stealing attacks

on robust models. Experimental results demonstrate the defense

effectiveness of BoundaryFuzz.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
Adversarial Machine Learning; Model Stealing Attacks and De-

fenses; Security Properties

ACM Reference Format:
Yue Qin, Zhuoqun Fu, Chuyun Deng, Xiaojing Liao, Jia Zhang, and Haixin

Duan. 2023. Stolen Risks of Models with Security Properties . In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00

https://doi.org/10.1145/3576915.3616653

of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New

York, NY, USA, 24 pages. https://doi.org/10.1145/3576915.3616653

1 INTRODUCTION
Recent studies have revealed that the deployment and success of

Machine Learning (ML) models can be affected by a broad range of

attacks that prompt serious security and privacy risks [5, 7, 8, 14,

15, 30, 32, 36, 39, 40, 43, 43, 48, 49]. In the security domain, evasion

attacks [5, 14, 39, 40] associated with adversarial examples [14]

mislead the target models by adding imperceptible perturbations to

the inputs. Meanwhile, in the privacy domain, inference attacks [7,

15, 30, 32, 36, 42, 43, 49] allow adversaries to infer information

about the training data, the parameters, or the decision boundary

of a target model. To mitigate the security risks of ML models, the

verifiable robust ML [10, 13, 19, 33, 33, 51–53] stands for a new trend

of ML security defense. In verifiable robust ML models, the Security

Property (SP) is identified to represent a class of evasion strategies

that might be available to an adversary and specifies a requirement

on their effect on the classifier [10]. As an instance of the SP, the

Monotonicity property requires that the classifier is monotonically

increasing along some feature dimensions [10]. In the context of

health insurance premium prediction, the premium cost is designed

to be monotonically increasing along with BMI value or a habit

of smoking, as those features imply a worse health status of the

insured person. Designed as logical constraints in multiple forms,

SP is more flexible and expressive than traditional defenses [31,

33, 33, 41, 44, 51] and can meet various security needs of different

applications [10, 13]. However, though SP has demonstrated its

success to secure ML models with satisfying accuracy-security

trade-off [10, 13], its side effect on the privacy domain is unclear

and has not been studied.

In this paper, we investigate privacy impacts on four security

properties (i.e., LocalInvariance, Lipschitzness, SmallNeighborhood

and Monotonicity) of robust ML models, with a focus on Model

Stealing (MS) attacks, where the attacker aims to train a substitute

model with similar functionality to the target model [20, 35, 57].

MS attacks arouse severe privacy risks. For instance, stealing a

trained model inherently constitutes intellectual property theft as

it is often difficult to train an advanced ML model due to the lack of

data or computing resources [35]. In the meantime, the success of

MS attacks can break the black-box limit of the target model’s query

interface and thus assists several other ML privacy attacks such

756

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616653&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

as membership inference attack [29, 43] and attribute inference

attack [32] that leak sensitive information of individuals. Following

[10], our study focuses on five real-world datasets of different scale

used in security applications. These datasets involve classification

tasks that, when attacked by adversarial evasions, may result in

financial loss or sensitive information leakage.

Particularly, we systematically evaluate privacy impacts on four

security properties by measuring the success of three typical MS

attacks (in five variants) and two state-of-the-art MS defenses on ro-

bust models
1
. In our study, we reveal that all robust models trained

with the four security properties are more vulnerable to MS attacks

than their naturally undefended training (i.e., natural models). This

is because a security property of a target model can benefit an MS

attacker. More specifically, in MS attacks, the adversary queries

the target model to label a dataset (i.e., the substitute training set)

and trains a substitute model that approximates the target model’s

behavior. The main challenge lies in two aspects: 1) the attacker

has little training data of the target model, and 2) the query budget

(i.e., opportunities to query the target model’s prediction interface)

is limited. However, a model trained with SPs results in more sta-

ble and smooth predictions [10, 13], which enables higher-quality

predictions on noisy data inputs. This enhances the querying ef-

fectiveness and facilitates the success of MS attacks. Additionally,

SP constrains the model’s output according to the condition of the

model’s input, which can further leak information about the target

model’s decision boundary. Similarly, we found thatMS defenses are

less effective on robust models. In MS defenses, the most effective

methods protect the confidentiality of the model’s decision bound-

ary by selectively adding perturbations to the predictions of sus-

picious inputs [21, 37]. The accuracy-privacy trade-off depends on

howwell the adversary distinguishes suspicious inputs from benign

ones. However, SP reduces the prediction gap between benign and

suspicious samples, making the defense against MS more difficult.

Given the above understandings, we further proposeMaskedThief,

an optimized, semi-supervised MS attack against robust models. In

particular, MaskedThief incorporates current MS attacks with an

inference strategy. Only a few samples are sent to query the target

model, while the predictions on the subsequent samples are inferred

based on the predictions of its nearest neighbors. The inference

uncertainty can be quantified using Hoeffding’s Inequality [16]

applied to the SP of the target model. The attacker can thereby

determine whether to adopt the inference to label the synthesized

sample or to query the target model instead. With such a strategy,

only inputs with high uncertainty (i.e., information relative to the

decision boundary) are sent to query the target model. This en-

hances the query effectiveness and enlarges the actual size of the

substitute training set under the same query budget. Experimental

results show that the inference strategy of MaskedThief improves

all evaluated MS attacks.

To mitigate such privacy risk on models trained with security

properties, we design a privacy property, BoundaryFuzz, which en-

forces the model predictions on inputs near the decision boundary

to be uncertain. Compared with other state-of-the-art MS defenses,

our method has an overwhelming advantage in defending robust

1
Robust models and models trained with security properties were used interchangeably

in this paper

models against MS attacks for it is compatible with existing se-

curity properties. Perturbation-based defenses, though achieving

accuracy-privacy trade-off, can inevitably undermine the security

properties of robust models. This is because model predictions

are deteriorated by the perturbation after the robust training pro-

cess which enforces SP. However, our method can fit well into the

robust training process to be enforced along with security prop-

erties. Experimental results demonstrate the defense effectiveness

of BoundaryFuzz, and it results in little performance drop in the

classification accuracy as well as the constraint accuracy of SP. To

the best of our knowledge, this is the first defense for ML models

to satisfy goals in accuracy, security, and privacy altogether.

Contributions. We summarize the contributions as follows:

•We systematically evaluate the privacy impact on four security

properties (i.e., LocalInvariance, Lipschitzness, SmallNeighborhood

and Monotonicity) of robust ML models, and provide in-depth

analysis. Our results reveal that robust models suffer from larger

privacy risks, in terms of model stealing, than natural models;

• We propose MaskedThief, an optimized MS attack specific to

robust models. Our approach improves upon existing MS attacks

by leveraging information in SPs;

•We design BoundaryFuzz, a privacy property that is compatible

with security properties for ML models. A robust model equipped

with BoundaryFuzz achieves balanced trade-offs between accuracy,

security, and privacy. Our code, data, and full-version paper with

Appendix are available at [3].

2 BACKGROUND
Security Properties of Robust Models. For a distribution 𝐷 , a set
A and a security property 𝜙 , a verifiable adversarial defense system
trains the parameters \ of an ML model 𝐹\ towards

argmax

\

Pr

x∼𝐷
[∀z ∈ A. 𝜙 (x, z, \)]

s.t. the probability of 𝐹\ satisfying the security property (SP)𝜙 (x, z, \)
for z is as large as possible. In this objective, x describes one or

more independent data set samples.

In this paper, we consider two state-of-the-art verifiable adver-

sarial defenses, DL2 [13], and LogicEnsemble [10]. These robust

training frameworks enforce SPs by translating the property into de-

rivative loss functions and optimizing the objective using gradient-

based methods [31, 41]. In particular, DL2 demonstrates its success

in training SPs where the inputs are exactly from the training data

or are closed to them, a.k.a. local SPs, such as LocalInvariance,

Lipschitzness, Segmentation, as elaborated below). LogicEnsemble

shows effectiveness on training security properties, whose inputs

are not constrained to have a similar distribution to the training

data, a.k.a., global SPs, such as Monotonicity, and SmallNeighohood.

In this paper, we consider four representative security properties

and adopt their original definition and implementation in DL2 and

LogicEnsemble. Below we elaborate on the formal definition and

the security implication of these properties.

Given a target model 𝐹\ : X → Y and a sample (x, 𝑦), where
x ∈ X is the input and 𝑦 ∈ Y is the true label, an (ℓ𝑝 , 𝜖)-adversary
generates a perturbed input x̃ ∈ B𝑝,𝜖 (x) within the perturbation

budget of 𝜖 under ℓ𝑝 -norm distance: B𝑝,𝜖 (x) = {x̃ : | |x − x̃| |𝑝 < 𝜖},

757

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

where | |x| |𝑝 =

(∑𝑑
𝑖=1 |𝑥𝑖 |𝑝

) 1

𝑝
. Against such an adversary, a robust

model will satisfy the following security properties:

Property 1 (LocalInvariance). This property requires that for any

input x with a classification result 𝑦, inputs in its 𝜖 neighborhood

have a high probability to be predicted as 𝑦:

∀x ∈ Xtr, x̃ ∈ B𝑝,𝜖 (x), 𝐹\ (x̃)𝑦 > 1 − 𝛿

(LocalInvariance)

This is also the general form of certified adversarial robust-

ness [6] and is similar to the constraints in many previous stud-

ies [33, 33, 51]. The training-set-specific variant of LocalInvariance

requires that the KL divergence of two closed random inputs from

the dataset is small:

∀x, x′ ∈ Xtr, | |x − x′ | |2 < 𝜖1 ⇒ KL[𝐹\ (x) | |𝐹\ (x′)] < 𝜖2
(LocalInvariance

𝑇
)

Property 2 (Lipschitzness). This property requires that for the

inputs in the neighborhood of random input pairs from the training

set, the distance between their outputs is less than the Lipschitz

constant 𝐿 times the distance between the inputs:

∀x, x′ ∈ Xtr, x̃ ∈ B𝑝,𝜖 (x), x̃′ ∈ B𝑝,𝜖 (x′),
| |𝐹\ (x̃) − 𝐹\ (x̃′) | |2 < 𝐿 · | |x̃ − x̃′ | |2

(Lipschitzness)

The training-set-specific variant of Lipschitzness requires the

same constraint on random input pairs from the training set:

∀x, x′ ∈ Xtr, | |𝐹\ (x) − 𝐹\ (x′) | |2 < 𝐿 · | |x − x′ | |2

(Lipschitzness
𝑇
)

Property 3 (SmallNeighborhood). This property requires that for

any two neighboring inputs within distance 𝜖 , the distance between

their outputs is less than a constant 𝐿 times 𝜖 :

∀x, x′ ∈ X, 𝑑 (𝑥, 𝑥 ′) < 𝜖 ⇒ ||𝐹\ (x) − 𝐹\ (x′) | |2 < 𝐿 · 𝜖,

(SmallNeighborhood)

where 𝑑 (𝑥, 𝑥 ′) = max𝑖
x𝑖−x′𝑖
𝜎𝑖

is the 𝑙∞ norm of the feature values

normalized by the standard deviation. This property can be regarded

as a relaxed form of Lipschitzness.

Property 4 (Monotonicity). Given a feature 𝑗 ,

∀x, x′ ∈ X, [𝑥 𝑗 ≤ 𝑥 ′𝑗 ∧ (∀𝑖 ≠ 𝑗, 𝑥𝑖 = 𝑥
′
𝑖)] ⇒

Increasing 𝐹\ (x)𝑦 ≤ 𝐹\ (x′)𝑦 (Monotonicity
𝐼)

Decreasing 𝐹\ (x)𝑦 ≥ 𝐹\ (x′)𝑦 (Monotonicity
𝐷)

This is a domain-specific security property where the model

output is positively or negatively correlatedwith the value of certain

features that affect the suspiciousness of the inputs in common

sense. Below we present an example to explain this property.

• An example of the monotonicity property. In the task of health

insurance premium prediction, the goal is to predict whether the

premium cost of an insured exceeds a certain value according to

his or her personal information. Aside from other features, a higher

BMI value or a habit of smoking implies a worse health status of

the insured person, and thus may result in a higher cost of medical

premium. Thus, the BMI value and the smoking habit are features

with monotonicity property in this task.

Property Generalizability. We applied the concept of robustness

generalization in [10, 13] as the property generalizability in this

study. For instance, DL2 [13] trains properties with low general-

izability which sample inputs from training data (e.g., Lipschitz-

ness(T)), or moderate generalizability which sample inputs from

the neighborhood of the training data (e.g., Lipschitzness), bounded

by 𝑙𝑝 norm distance. LogicEnsemble [10] trains properties with

high generalizability, sampling inputs from arbitrary feature space.

Model Stealing Attacks and Defenses. MS attacks involve re-

constructing the target model’s parameters (non-public) [49, 50]

or stealing the model functionality [12, 20, 49, 54] (i.e., the deci-

sion boundary). In this paper, we focus on the attacks where the

adversary aims to train a substitute model which approximates

the behavior of the victim model to steal the functionality. Such

attacks use data augmentation techniques [20, 39] or sampling

strategies [49] to generate a set of data points and query the victim

model to label them. The labeled dataset is used to train a substitute

model for high prediction accuracy on unseen testing data and

high prediction agreement with the victim model. In our study,

we evaluate three state-of-the-art model stealing attacks (in five

variants) on robust models to investigate the privacy impact on

security properties w.r.t the model confidentiality (see Section 3.2).

Existing defenses strategies against model stealing are in two

streams: detection-based methods [18, 22, 38, 56, 57] which aim to

detect stealing query patterns, and perturbation-based methods [21,

28, 37] which aim to degrade the quality of the predicted posterior

via perturbation. Detection-based attacks are not the focus of this

paper since they make strong assumptions on the query set, i.e., the

distance between queried samples are expected to approximately

fit a normal distribution [20], and are only targeted to specific at-

tacks [35, 36]. Contrarily, perturbation-based defenses are more

general and effective [21, 35, 37]. In perturbation-based defenses,

the defender aims to decrease the performance of the substitute

model or to increase the number of queries required by the attack. In

this paper, we evaluate two popular perturbation-based model steal-

ing defensemethods on robust models to analyze the privacy impact

on security properties from the perspective of risk mitigation (§3.3).

3 MEASUREMENT STUDY: STOLEN RISKS OF
ROBUST MODELS

In this section, we present our measurement study on stolen risks of

robust models. Specifically, we compare the stolen risks of models

with and without security properties under three model function-

ality stealing attacks, i.e., Random Query Attack, Line Search At-

tack, Jacobian-based Augmentation Attack, and provide qualitative

analysis on why models trained with security properties are more

vulnerable to MS attacks. We also evaluate two popular defense
methods against MS attacks and explain why such approaches are

less effective on robust models.

Below we introduce the threat model of the attack, the datasets

for applications that are highly sensitive both in security and pri-

vacy, and the target models with different security properties to

bootstrap our measurement study.

758

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

Threat Model. We focus on substitute model training attacks

that steal the functionality of the target models under Label-only
black-box settings. The target model 𝐹𝑇 maps a feature vector x =

[𝑥1, 𝑥2, . . . , 𝑥𝑑] with 𝑑 features to the prediction confidence scores

[𝑓𝑇 (x)1, 𝑓𝑇 (x)2, . . . , 𝑓𝑇 (x)𝐶] for 𝐶 classes. We denote the normal-

ized confidence scores as 𝐹𝑇 (x), where 𝐹𝑇 (x)𝑖 =
exp(𝑓𝑇 (x)𝑖)∑𝐶
𝑗=1 exp(𝑓𝑇 (x) 𝑗)

Following [10], we focus on binary classification (i.e.,𝐶 = 2), which

can be extended to the multi-class scenario.

The attack goal is to train a substitute model 𝐹𝑆 with a decision

boundary similar to that of the target model 𝐹𝑇 . The attacker knows

the category of the target ML model, while its architecture and

parameters are unknown. The attacker has access to an auxiliary

dataset 𝐷aux as a seed dataset, which is either a small part (𝐷𝑃
aux

)

of or has similar distribution (𝐷𝑋
aux

) with the training set of the

target model. Given an input x, the target model 𝐹𝑇 predicts the

probability of x being in class𝑘 as 𝐹𝑇 (x)𝑘 , and returns the prediction
label as 𝑦𝑇 (x) = argmax𝑘𝐹𝑇 (x)𝑘 . In addition, similar to previous

work [17, 20, 49, 57], we assume the attacker has limited budget (𝑄)

to query the target model.

3.1 Experimental Setup
Datasets The overview of the datasets is shown in Table 1. As

in [30], we split each dataset 𝐷 into a training set 𝐷tr, a testing set

𝐷ts, and an external auxiliary dataset 𝐷𝑋
aux

unseen to the models,

and randomly select a small part of 𝐷tr as a partial seed set 𝐷𝑃
aux

.

We elaborate on the details of each dataset below.

Dataset |𝐷 | |𝐷tr | |𝐷ts | |𝐷aux | 𝑑

Medical Insurance 3,275 2,293 932 50 8

Cryptojacking 4,000 2,800 1,150 50 7

Customer Churn 10,126 7,088 2,988 50 19

Spam Account 39,980 27,986 11,944 50 15

Spam URL 359,218 251,488 107,730 50 25

Table 1: Overview of the measurement datasets. 𝑑 represents
the number of features.

•Medical Insurance (MI). The Medical insurance dataset [1] records

3,630 user information in a medical insurance company. After de-

duplication in the pre-processing, the cleaned dataset contains

information of 3,275 users, where 384 are positive samples and

2,891 are negative samples.

• Customer Churn (CC). The Customer Churn dataset [2] is used to

predict whether the customers will continue their credit card ser-

vice. The dataset consists of 10,126 samples in two categories: 8,500

existing customers and 1,626 attrited customers. In our evaluation,

we remove ID-like features such as credit card numbers. We also

encode categorical features as ordinal integers and transform all

data as data frames using scaler.

• Spam Account (SA). The Spam Account dataset collects Twitter

spam account information (e.g., account age, number of followings)

via a social honeypot [27]. This dataset is balanced with 19,254

randomly-sampled benign accounts and 20,726 randomly-sampled

spam accounts.

• Twitter Spam URL (SU). The Spam URL dataset [10, 24] has been

utilized to train a Twitter spam URL detector, using features related

to URL redirection chains and graphs. In our study, we used the

dataset introduced in [10], where they re-extracted 25 features

based on the description in [24]. This is the largest dataset in our

evaluation experiment, which contains 158,704 positive samples

and 200,566 negative samples.

• Cryptojacking (CJ). The Cryptojacking dataset [23] collects cryp-

tojacking website data from 12 families of mining libraries. This

dataset includes 2,004 positive samples and 1,996 negative samples.

Target Models We apply the same target models as in DL2 [13]

and LogicEnsemble [10]. Specifically, we train Multi-Layer Percep-

tron (MLP) [34] with LocalInvariance and Lipschitzness using DL2

and train XGBoost [9] with SmallNeighborhood and Monotonicity

using LogicEnsemble. We follow the model architecture and other

experimental settings of DL2 and LogicEnsemble while fine-tuning

several hyperparameters, such as the learning rate and the number

of trees. The hyperparameters used in our implementation can be

found in Appendix 9.2. We evaluate the performance of the target

models, and the results can be found in Appendix 9. In particular,

Table 9 shows the results of natural models. Table 10 shows the

test performance and the security property effectiveness, i.e., the

constraint accuracy, of robust models trained with LocalInvariance

and Lipschitzness. Table 11 shows the test performance of robust

models trained with SmallNeighborhood and Monotonicity. Since

we train these two properties using LogicEnsemble, which enforces

global robustness, their constraint accuracy is equivalent to 100%.

Metrics Aligned with previous MS attacks [12, 17, 20, 49], we

measure the agreement between predictions of the substitutemodels

and the target models. This is equivalent to measure the accuracy of

the predictions of the substitute models when taking the predictions

of the target models as groundtruth labels. In addition, we report the

Mean Squared Error (MSE) between the prediction posteriors of the

substitute models and the target models. A smaller MSE indicates

that the substitute models have more similar posterior with the

victim models at a score-level. We also measure the classification

performance of the substitute models. Since some of our datasets

are unbalanced (e.g., Medical dataset), we use F1 score taking the

class with minority samples as positive class instead of accuracy.

3.2 Model Stealing Attack against Robust Model
Attack Methods and parameter settings We evaluate the fol-

lowing MS attacks on natural and robust models:

• Random Query Attack [49], a baseline strategy which samples 𝑄

points 𝑥 ∈ X at random following a given distribution. We measure

the two distributions of this strategy: Uniform distribution and

Gaussian distribution.

• Line Search Attack [49], which samples random points in the fea-

ture space and generates additional data using line search between

the random points. The line search algorithm generates adaptive

queries as the mean between two samples crossing the decision

boundary. This attack method does not require a seed dataset.

• Jacobian-based Augmentation (JBA) Attack [20, 39, 54], which

trains a substitute model using a seed dataset and iteratively gen-

erates adversarial examples of the substitute model. It queries the

759

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.95

0.96

0.97

0.98

0.99

1.00

A
gr

ee
m

en
t

Medical Insurance

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.86

0.88

0.90

0.92

Customer Churn

Uniform Gaussian LineSearch JBA(P) JBA(X)
0.84

0.86

0.88

0.90

0.92

0.94

0.96
Spam Account

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.60

0.65

0.70

0.75

0.80

0.85

Spam URL

Uniform Gaussian LineSearch JBA(P) JBA(X)
0.90

0.92

0.94

0.96

0.98

1.00

Cryptojackiing

None Lipschitz(T) Lipschitz LocalInvariance(T) LocalInvariance

Figure 1: Agreement of MS attacks on MLP models as well as robust MLP with Lipschitzness and LocalInvariance.

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.95

0.96

0.97

0.98

0.99

1.00

A
gr

ee
m

en
t

Medical Insurance

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.80

0.82

0.84

0.86

0.88

Customer Churn

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.6

0.7

0.8

0.9
Spam Account

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.5

0.6

0.7

0.8

0.9
Spam URL

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.92

0.94

0.96

0.98

1.00
Cryptojackiing

None SmallNeighborhood Monotonicity

Figure 2: Agreement of MS attacks on XGBoost models as well as robust XGBoost with SmallNeighborhood and Monotonicity.

Uniform GaussianLineSearch JBA(P) JBA(X)

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
S

E

Medical Insurance

Uniform GaussianLineSearch JBA(P) JBA(X)

0.075

0.100

0.125

0.150

0.175

0.200

Customer Churn

Uniform GaussianLineSearch JBA(P) JBA(X)

0.05

0.10

0.15

0.20

0.25

Spam Account

Uniform GaussianLineSearch JBA(P) JBA(X)

0.2

0.3

0.4

0.5

0.6

Spam URL

Uniform GaussianLineSearch JBA(P) JBA(X)

0.0002

0.0004

0.0006

0.0008

Cryptojackiing

None Lipschitz(T) Lipschitz LocalInvariance(T) LocalInvariance

Figure 3: Mean Squared Error of MS attacks on natural MLP as well as robust models with Lipschitzness and LocalInvariance.

Uniform Gaussian LineSearch JBA(P) JBA(X)
0.01

0.02

0.03

0.04

0.05

0.06

M
S

E

Medical Insurance

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.15

0.20

0.25

0.30

Customer Churn

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.2

0.4

0.6

0.8
Spam Account

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.2

0.4

0.6

0.8

Spam URL

Uniform Gaussian LineSearch JBA(P) JBA(X)

0.05

0.10

0.15

Cryptojackiing

None SmallNeighborhood Monotonicity

Figure 4: Mean Squared Error ofMS attacks on XGBoost models and robust XGBoost with SmallNeighborhood andMonotonicity.

target model to label the adversarial samples as an augmented

dataset to retrain the substitute model. The augmentation tech-

nique can apply different algorithms to craft adversarial examples.

For differentiable models (MLP in this paper), we apply Iterative

FGSM (I-FGSM) [14] to generate adversarial examples. This ap-

proach adds perturbation to benign samples towards increasing

the classification loss iteratively in 𝑘 steps. For non-differentiable

models (XGBoost in this paper), we apply ZOO [8], a black-box

adversarial attack against non-differentiable models which approx-

imates the gradient with symmetric difference quotient [26]. We

evaluate two variants of Jacobian-based Augmentation Attacks:

JBA(P) that takes a small part of the training set 𝐷𝑃
aux

as the seed

set and JBA(X) that takes an auxiliary dataset 𝐷𝑋
aux

, which has the

same distribution with the training data of the victim model.

• Attack Parameter Settings. For all datasets, we set the size of the
seed query set |𝐷aux | as 50 and the total query budget 𝑄 as 200.

We set 𝐿∞ Ball for LocalInvariance and Lipschitzness properties as

in [13]. We empirically select the best hyper-parameters associated

with synthetic data generation for each victim model. Specifically,

for Random Query attacks, we set a range 𝑟 from 1 to 5 with step

size 0.5 and generate random points from the interval [−𝑟, 𝑟]. For
JBA attacks on Neural Networks, we set the all perturbation steps

760

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

0 50 100 150
0.00

0.05

0.10

0.15

0.20

D
en

si
ty

None
Lipschitz(T)
Lipschitz
LocalInvariance(T)
LocalInvariance

(a) 𝑁 = 50

0 50 100 150
0.00

0.05

0.10

0.15

D
en

si
ty

None
Lipschitz(T)
Lipschitz
LocalInvariance(T)
LocalInvariance

(b) 𝑁 = 100

0 50 100 150
0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

None
Lipschitz(T)
Lipschitz
LocalInvariance(T)
LocalInvariance

(c) 𝑁 = 200

0 50 100 150
0.0

0.1

0.2

0.3

0.4

D
en

si
ty

None
Lipschitz(T)
Lipschitz
LocalInvariance(T)
LocalInvariance

(d) 𝑁 = 400

Figure 5: Distribution of angular deviation \ between gradi-
ent on weights.

as 5 and use GridSearch to select the best perturbation budget 𝜖

from 0.01 to 0.5 for each dataset and victim model. For JBA attacks

on XGBoost, we select the best value of the constant ℎ for gradient

estimation from {0.0001, 0.001, 0.01, 0.1}. The augmentation rounds

is set as log
2

𝑄

|𝐷aux | = 2.

Results We report the agreement (Figure 1,2) and MSE (Figure 3,

4) to compare the effectiveness of MS attacks on natural models

versus robust models. The figures show the associated average,

the minimum, and the maximum values. Overall, models with se-

curity properties (i.e., LocalInvariance, Lipschitzness, SmallNeigh-

borhood, and Monotonicity) show higher agreement and lower

MSE in all attacks. Specifically, for neural networks, models trained

with LocalInvariance and Lipschitz are more vulnerable (i.e., higher

agreement and lower MSE) to MS attacks than models trained with

LocalInvariance
𝑇
and Lipschitz

𝑇
. Both Lipschitzness and Small-

Neighborhood are security properties that aim to ensure prediction

smoothness, and they have less impact on MS attacks when com-

pared with LocalInvariance or Monotonicity.

We also plot the F1 scores of the substitute models attacking

different target models in Appendix Figure 9,10. Note that those F1

scores cannot be directly compared due to variations in the original

test performance of the target models.

Insights and Analysis To analyze the underlying reason for

the higher performance on stealing robust models, we borrow the

concept of angular deviation from a defending method, Prediction

Poisoning (PP) [37]. Particularly, PP adds targeted noise to the

victim model’s posteriors which results in a gradient direction of

adversary’s model to maximize the angular deviation between the

original and the poisoned gradient signals. The main idea is to label

a poisoned query set which could deteriorate the training process of

the substitute model. The angular deviation captures the changes on

the gradient of the adversary’s loss w.r.t. the model parameters after

the perturbation. A large deviation indicates the query set labeled

by the perturbed victim model is poisoning for training a substitute

model similar to the victim. Therefore, the angular deviation serves

as a metric to measure the quality of the labeled query set, taking

the original victim’s posterior as an optimal gradient direction. PP

experimentally demonstrates the effectiveness of this mechanism

under the label-only threat model, where the attacker only has

access to the top-one labels of the victim’s predictions.

Inspired by this work, we adopt the angular deviation to the

attack scenario to quantify the potential of a victim model’s func-

tionality to be stolen by substitute model training. The main chal-

lenge of model stealing lies in the limited knowledge of the training

data. Many attack methods make efforts to generate high-quality

synthesized samples similar to the original samples and near to the

model’s decision boundary. Thus, we take the gradient from the

loss on benign samples (x, 𝑦) as the optimal direction

u = −∇𝑤𝐿(𝐹𝑆 (x;𝑤), y) =
∑︁
𝑘

𝑦𝑘∇𝑤 log 𝐹𝑆 (x,𝑤)𝑘 = 𝐺𝑇 y,

and calculate its angular deviation from the gradient from synthe-

sized samples (x̃, 𝑦)

ũ = −∇𝑤𝐿(𝐹𝑆 (x̃;𝑤), ỹ) =
∑︁
𝑘

𝑦𝑘∇𝑤 log 𝐹𝑆 (x̃,𝑤)𝑘 = 𝐺𝑇 ỹ,

\ = arccos

(
u · ũ
|u| · |ũ|

)
,

where𝐺 is the Jacobian matrix of log-likelihood predictions 𝐹 (x,𝑤)
w.r.t. model parameters. A smaller deviation \ implies a higher qual-

ity of the synthesized samples, which may result in more successful

attacks.

Figure 5 shows the distribution of the angular deviation on be-

nign samples and synthesized samples of Medical Insurance dataset.

Here, we randomly select 𝑁 samples from the testing set as benign

samples and 𝑁 samples from the augmented set in JBA(P) attack

as synthesized samples. Following [37], we randomly initialize the

substitute model and train it with batch size 1. At each training step,

we record the gradient direction from the loss on the sample newly

added to the training data. Finally, we calculate the pair-wise cosine

similarities between the gradient direction from benign samples

and synthesized samples, map them to the angular deviations using

the inverse trigonometric functions and plot their distribution.

The results in Figure 5a show that with a small number of queries

(𝑁 = 50), the resulted angular deviations from robust victim models

are prevalently smaller than those resulted from natural victimmod-

els (e.g., red line with None property). This indicates that robust
models are capable to label synthesized dataset with higher
quality for more successful MS attacks under a limited query
budget. One reason might be that the difference between pre-

dictions on benign samples and synthesized samples from robust

models are constrained by the security properties, which results in

more similar gradient directions and smaller angular deviations. In

addition, we observe that such advantage decays with the increase

of the number of queries (see Figure 5b, 5c,5d). Hence, the difference

in the quality of the query sets could be compensated by a larger

size of the query sets.

761

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Dataset Target Model Prediction Poisoning Adaptive Misinformation
Uniform Gaussian LineSearch JBA(P) JBA(X) Uniform Gaussian LineSearch JBA(P) JBA(X)

Medical

Insurance

MLP 2.45 2.88 4.58 3.02 5.39 6.54 5.07 5.47 2.43 3.07

Lipschitzness(T) 0.13 2.32 3.8 3.5 8.33 1.94 7.26 3.91 3.29 3.95

Lipschitzness 0.92 2.23 2.85 0.18 4.42 2.48 7.06 3.12 3.04 0.25

LocalInvariance(T) 0.55 2.00 3.47 1.12 8.5 3.07 4.11 5.68 0.71 8.07
LocalInvariance 0.06 0.12 0.09 0.93 0.77 0.37 0.33 0.73 0.15 0.11

XGB 0.94 0.50 2.03 4.74 4.74 6.52 2.30 6.86 4.50 3.70
SmallNeighborhood 0.10 0.34 1.17 3.97 3.89 2.2 0.89 5.03 2.70 2.70

Monotonicity 0.36 0.38 0.27 4.12 3.71 1.81 0.07 2.76 3.26 3.16

Curstomer

Churn

MLP 6.80 4.63 9.98 6.51 0.92 5.71 2.13 5.90 4.27 4.08
Lipschitzness(T) 5.87 5.39 0.17 3.73 8.56 5.07 3.73 2.38 4.86 2.57

Lipschitzness 4.4 0.32 3.77 4.86 6.92 5.47 1.39 3.11 4.18 3.91

LocalInvariance(T) 4.35 6.43 5.76 8.5 0.07 4.29 0.04 2 0.91 0.48

LocalInvariance 4.99 2.18 6.67 5.97 3.15 4.31 3.53 0.13 4.65 0.35

XGB 12.46 12.46 4.57 5.23 5.23 8.97 3.64 12.14 2.03 2.13
SmallNeighborhood 2.41 2.41 4.27 5.18 5.18 1.1 1.56 11.73 1.02 0.48

Monotonicity 0.95 0.95 3.29 4.98 4.98 5.59 3.28 7.24 0.97 1.52

Spam

Account

MLP 1.54 2.12 3.75 0.91 0.87 2.43 0.46 6.28 1.42 0.45

Lipschitzness(T) 2.00 1.20 2.27 0.64 1.13 1.56 1.12 0.72 0.00 0.50

Lipschitzness 0.05 0.49 2.75 0.54 0.99 0.39 0.04 4.08 1.70 0.82

LocalInvariance(T) 3.36 3.18 1.69 1.14 1.93 2.18 1.71 2.19 1.57 1.61

LocalInvariance 0.54 1.00 2.05 1.12 0.62 0.93 0.49 2.08 0.24 2.2
XGB 1.87 2.44 3.21 0.81 1.64 2.45 1.71 4.38 1.96 1.09
SmallNeighborhood 0.95 1.15 0.24 0.38 0.38 0.93 0.83 1.77 0.50 0.30

Monotonicity 1.76 0.38 1.41 0.63 0.63 1.28 0.17 2.13 0.96 0.38

Spam

URL

MLP 3.43 3.01 2.67 1.11 1.56 2.79 1.84 3.12 2.29 1.33

Lipschitzness(T) 2.12 1.43 1.79 1.34 1.87 1.97 1.57 1.67 0.97 1.15

Lipschitzness 0.87 0.94 1.73 0.95 1.69 0.82 0.31 3.75 2.10 1.26

LocalInvariance(T) 3.13 2.96 1.77 1.43 2.01 2.35 1.69 2.26 1.64 1.65
LocalInvariance 0.94 1.12 1.95 1.12 0.98 1.65 0.87 2.14 0.67 1.22

XGB 1.95 2.56 2.31 1.31 1.94 2.25 1.89 3.01 1.67 1.49
SmallNeighborhood 1.53 1.09 0.84 0.63 0.92 1.10 0.56 1.32 0.91 0.24

Monotonicity 1.72 0.74 1.65 0.81 0.73 1.35 0.56 2.01 1.21 0.45

Cryptojacking

MLP 1.75 2.46 3.15 1.34 1.21 2.43 0.97 3.24 1.64 0.81

Lipschitzness(T) 2.06 1.72 2.35 0.74 1.89 1.26 1.64 1.25 0.78 2.34
Lipschitzness 0.32 0.73 2.42 0.73 1.46 0.89 0.04 3.08 2.14 1.21

LocalInvariance(T) 3.02 2.64 1.25 1.02 1.63 2.05 1.71 2.32 1.13 1.35

LocalInvariance 1.43 1.35 2.65 1.54 0.97 1.36 0.69 1.97 0.64 1.35

XGB 1.68 2.14 2.23 1.11 1.47 2.23 1.98 2.98 2.36 0.97
SmallNeighborhood 0.82 1.04 1.78 0.64 0.38 1.01 0.95 1.92 0.65 0.72

Monotonicity 0.89 0.83 1.94 0.93 0.67 1.18 0.43 2.15 1.59 0.72

Table 2: Decrease in substitute models’ F1, compared to the attack performance without defense.

3.3 Defense Degradation on Robust Models
Defense Methods and Parameter Settings In our study, we

evaluate the following state-of-the-art defense methods against MS

attacks on robust models:

• Prediction Poisoning (PP) [37]: the defender aims to decrease the

accuracy of the stolen model by adding targeted noise to the poste-

riors of the victim model by 𝐹 ′
𝑇
(𝑥) = (1− 𝛼)𝐹𝑇 (𝑥) + 𝛼[, where [is

an extreme point selected from one-hot representation of each class

label, which maximizes the angular deviation between the original

and the poisoned gradient of the surrogate model. The perturbation

factor 𝛼 is a hyper-parameter which controls the weight of the

perturbation.

• Adaptive Misinformation (AM) [21]: the defender trains a misin-

formation function 𝐹 by minimizing the reverse cross entropy loss

and adaptively inject the misinformation into model prediction:

𝐹 ′𝑇 (𝑥) ← (1 − 𝛼) · 𝐹𝑇 (𝑥) + 𝛼 · 𝐹𝑇 (𝑥),

where 𝛼 = 1

1+exp
{
𝑣 · [max

𝑖
𝐹𝑇 (𝑥)𝑖−𝜏]

} , 𝑣 and 𝜏 are pre-defined hyper-

parameters. This allows the defender to selectively modify the pre-

dictions of OOD (out-of-distribution, i.e., adversarial) queries while

preserving the correctness of the ID (in-distribution, i.e., benign)

queries. The defense method is motivated by the observations that

the predictions on OOD queries and ID queries vary in Maximum

Softmax Probability (i.e., the prediction confidence score).

762

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

• Defense Parameter Settings. For 𝑣 in Adaptive Misinformation

defense, we use the same value as in [21]. For 𝜏 in Adaptive Misin-

formation defense and 𝛼 in Prediction Poisoning defense, we select

the best values for each target model, respectively. The best value

of the hyper-parameter is determined as the one that results in a

largest degree of perturbation with at most 1% decrease in model

accuracy. For example, for selecting the best value for 𝛼 , we start

from setting its value as 0.01 and test the decrease in accuracy after

the perturbation. In each step, we increase the value of 𝛼 by 0.01

until a decrease in accuracy reaches 1%. We showcase the origi-

nal accuracy, the accuracy after defending perturbation and the

decrease in accuracy of Medical Insurance dataset in Table 12.

Results Table 2 shows the decrease in F1 score of the substitute

models, where the target models are defensed by Prediction Poi-

soning and Adaptive Misinformation. The results are averaged on

five individual tests. Overall, both defending methods show higher

effectiveness on naturally trained models, where the substitute

models have a larger F1 decrease. We also observe that the training

set constraints (i.e., Lipschitzness
𝑇
, LocalInvariance

𝑇
) might result

in higher F1 decrease, compared with natural models.

Specifically, for Medical Insurance dataset, LocalInvariance
𝑇

model has the largest F1 decrease in both defense methods against

JBA(X) attack, where the F1 decreases of Lipschitzness
𝑇
model

are also larger than naturally trained model. For Customer Churn

dataset, LocalInvariance
𝑇
model has the largest F1 decrease in PP

defense against Gaussian and JBA(P) attacks, and Lipschitzness
𝑇

model has the largest F1 decrease in PP defense against JBA(X)

attacks and MA defense against Gaussian and JBA(P) attacks. For

Spam Account dataset, LocalInvariance
𝑇
model has the largest F1

decrease in PP defense against Uniform, Gaussian and both JBA

attacks, and in AM defense against Gaussian and JBA(P) attacks.

Insights and Analysis To further analyze the defending effective-

ness, we compare the agreement between the predictions made

by defended and undefended models on ID and OOD samples, re-

spectively. This measures how similar predictions a target model

can make after it is defended against model stealing, compared to

its undefended counterparts. Table 3 shows the results on Medical

Insurance dataset. For each defense method, the third column (i.e.,

Gap) is the difference between the prediction agreements on ID

samples and OOd samples. A larger gap indicates that the defended

model is more capable to make correct predictions on ID samples

and misleading predictions on OOD samples, which implies higher

defending capability in terms of the trade-off between privacy and

accuracy. As shown in Table 3 and Table 12, with similar accuracy

decrease (≈ 1%) resulted by the perturbation, both defending meth-

ods show significantly higher agreement gaps on naturally trained

models than robust models. The underlying reasons are two folds.

First, the robust training process makes the predictions on ID
samples more sensitive to the perturbations. This limits the

degree of the perturbation that could be added to the robust models’

predictions, given the requirement to preserve model usability. Sec-

ond, the robust training enforces the victim models to make
similar predictions between ID and OOD samples. This makes

it difficult for the defending algorithm to distinguish OOD samples

from ID samples, which disables the selective modification on the

predictions of OOD samples.

Target Model
Prediction
Poisoning

Adaptive
Misinformation

ID OOD Gap ID OOD Gap

MLP 96.42 81.65 14.76 96.30 82.52 13.78
Lipschitzness(T) 96.81 91.26 5.55 98.23 95.55 5.68

Lipschitzness 96.97 91.02 5.94 97.95 94.61 3.35

LocalInvariance(T) 95.63 86.73 8.90 97.52 93.82 3.70

LocalInvariance 96.89 92.13 4.76 98.66 97.56 1.10

XGB 98.14 92.56 5.58 98.60 95.16 3.44
SmallNeighborhood 98.14 94.42 3.72 98.60 96.09 2.51

Monotonicity 99.07 97.21 1.86 99.26 98.14 1.12

Table 3: Agreement between predictionsmade by undefended
and defended models on in-distribution (ID) and out-of-
distribution (OOD) samples of Medical Insurance dataset.

3.4 Discussion
Choice of Datasets. In this paper, we investigate the privacy im-

pact on security properties of robust models (trained by the frame-

work DL2 [13] and LogicEnsemble [10]), and discuss the factors

associated with security properties, such as generalizability. To the

best of our knowledge, LogicEnsemble [10] is currently the only

robust training framework to enable global security properties (i.e.,

highest generalizabilty), while this framework cannot be adapted to

image datasets. To evaluate robust model trained by LogicEnsem-

ble, our study select datasets following [10]. We acknowledge the

importance of conducting measurement studies on image datasets

regarding privacy impacts on security properties and MS attacks.

However, we leave this task as future work.

Theoretical Analysis. In our paper, we conduct a measurement

study on stolen risks of robust models. While our study provides

valuable insights into the practical implications of security prop-

erties on model stealing, we recognize the need for an in-depth

theoretical analysis of the stolen risks of robust models. The anal-

ysis can be bootstrapped by formulating a definition for the risk

of model stealing, followed by analyzing linear models trained ro-

bustly, similar to the attack analysis in StealML [49], and use the

results to deliver preliminary theoretical insights into the impact

of security properties as well as other factors on the risk of model

stealing. We will leave this task as future work.

4 OPTIMIZED MODEL STEALING ATTACK
AGAINST ROBUST MODELS

Based on the above observations, in this section, we propose an

optimized MS attack against models with security properties. Our

attack incorporates an inference strategy based on the security

property into existing MS attacks, which enlarges the volume of the

substitute training set under the same query budget. We elaborate

on the attack procedure in §4.1 and experimental results in §4.2

4.1 Methodology
MaskedThief applies a semi-supervised learning approach to save

queries, enabling the attacker to label more augmented data un-

der the fixed query budget. Specifically, the attacker first queries

763

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 1: MaskedThief: Semi-supervised MSA

Input: Prediction API𝑀𝑇 and Property 𝜑 of the victim

model 𝐹𝑇 ; Query Budget 𝑄 ; Seed Query Set

𝑋
seed

= {𝑥1, 𝑥2, . . . , 𝑥𝑚}; 𝑛 training epochs for each

augmentation round; N training epochs after all

rounds

Output: Substitute Model 𝐹𝑆
1 𝑋𝑇 ← 𝑋

seed
;𝑌T ← 𝑀𝑇 (𝑋T) ;𝐷𝑇 ← {(𝑋T, 𝑌T)}

2 Initialize 𝐹𝑆 and train 𝑛 epochs on 𝐷𝑇

3 while Number of queries < 𝑄 −𝑚 do
4 for 𝑥 in 𝑋𝑇 do
5 if |𝐷𝑇 | > 𝐵 then
6 break

7 𝑥 ′ ←Synthesize(𝑥, 𝐹𝑆 , 𝑀𝑇 ,L, 𝑡, 𝛼)
8 𝑋𝑇 ← 𝑋𝑇

⋃{𝑥 ′}
9 if Infer(𝑥 ′, 𝑋𝑇 , 𝑌𝑇 ,𝜓) then
10 𝑌𝑇 ← 𝑌𝑇

⋃{Infer(𝑐, 𝑥 ′, 𝑋𝑇 , 𝑌𝑇,𝑐 , 𝜑)}
11 else
12 𝑌𝑇 ← 𝑌𝑇

⋃{𝑀𝑇 (𝑥 ′)}
13 𝐷𝑇 ← {(𝑋T, 𝑌T)}
14 Reinitialize 𝐹𝑆 and train 𝑛 epochs on 𝐷𝑇

15 Reinitialize 𝐹𝑆 and train 𝑛 epochs on 𝐷𝑇 epochs

16 return 𝐹𝑆

Table 4: Deviation of approximation for binary classification.

𝜑 b𝜑 (x, x′)

Lipschitzness
𝐿√
2

· | |x − x′ | |𝑝
LocalInvariance 𝛿 · exp{max(| |x − x′ | |𝑝 − 𝜖, 0) · _}

SmallNeighborhood
𝜖 ·𝐿√
2

· exp{max(| |x − x′ | |𝑝 − 𝜖, 0) · _}
Monotonicity(I) (1 − 𝐹𝑇 (x)𝑐) · exp{max(𝑥 𝑗 − 𝑥 ′𝑗 ,

∑
𝑖≠𝑗 |𝑥𝑖 − 𝑥 ′𝑖 |, 0) · _}

Monotonicity(D) (1 − 𝐹𝑇 (x)𝑐) · exp{max(𝑥 ′𝑗 − 𝑥 𝑗 ,
∑

𝑖≠𝑗 |𝑥𝑖 − 𝑥 ′𝑖 |, 0) · _}

the target model 𝐹𝑇 with a seed set to train a substitute model 𝐹𝑆
and synthesizes additional samples by random sampling or data

augmentation. For each additional sample, the attacker infers 𝐹𝑇 ’s

prediction on it along with a prediction uncertainty, according to its

distance to the preceding queries. Synthesized samples with high

inference certainty (i.e., low information w.r.t decision boundary)

are masked from the query dataset, as the attacker directly uses

the inferred predictions as their labels. The attack procedure is

shown in Algorithm 1. For each additional query, we calculate an

intersected confidence interval (CI), with the width determined by

the security property. The validity of the CI border (i.e., left end-

point ≤ right endpoint) serves as a measure of uncertainty, while

the median serves as the inference result. During this process, the

security property serves as a bridge that connects the response of

the additional query with the information already known by the

attacker, such as the responses of previous queries or the distances

between the additional query and previous queries. This connection

guides the inference process in semi-supervised learning, providing

a theoretical guarantee of inference accuracy. In other words, the

security property helps the attacker to make better use of the avail-

able information, allowing them to make more accurate inferences

from the limited labeled data.

More specifically, given an additional sample 𝑥 ′, the attacker

calculates a confidence interval CI(𝑥 ′) with respect to a given con-

fidence level [according to the prediction on the K-nearest neigh-

bors of 𝑥 ′, and infers the posterior 𝐹𝑇 (𝑥 ′). The inference process is
shown in Algorithm 2. Below we elaborate on how the adversary

infers the target model’s prediction on the augmented samples and

how this works on models with security properties. As in [47], we

assume the response is conditionally Bernoulli distributed given

the values of the features: 1[𝑦 (x) = 𝑐] |x ∼ Bernoulli(𝐹𝑇 (x)𝑐).

Algorithm 2: Infer: posterior of target model

Input: Label 𝑐 , Augmented sample 𝑥 ′;,Previous query
inputs 𝑋𝑇 and predictions 𝑌𝑇,𝑐 , Model Property 𝜑 ;

Hyperparameters: Maximum number of neighbors

𝐾 , Confidence Level [, Marginal of Label 𝑝;

Output: Inferred prediction 𝑦′ on label 𝑐

1 𝑙 ← 0; 𝑟 ← 1 ;

2 for 𝑘 in {1, 2, . . . 𝐾} do
3 `𝑘 ← 0; 𝜎𝑘 ← 0

4 𝑋𝑘 ← 𝑘 nearest neighbors of 𝑥 ′ in 𝑋𝑇
5 𝑌𝑘,𝑐 ← Predictions of 𝑥 ∈ 𝑋𝑘 on label c in order

6 𝐷𝑘 ← {(𝑥𝑖 , 𝑦𝑖) |𝑥𝑖 ∈ 𝑋𝑘 , 𝑦𝑖 ∈ 𝑌𝑘,𝑐 }
7 for (𝑥𝑖 , 𝑦𝑖) in 𝐷𝑘 do
8 `𝑘 ← `𝑘 + 𝑦𝑖
9 𝜎𝑘 ← 𝜎𝑘 + b (𝑥𝑖 , 𝑥 ′)

10 `𝑘 ←
`𝑘
𝑘
; 𝜎 ← 𝜎𝑘

𝑘
+

√︃
1

2𝑘
ln(2𝑘

1−[)
11 𝑙 ← max(𝑙, `𝑘 − 𝜎𝑘); 𝑟 ← min(𝑟, `𝑘 + 𝜎𝑘)
12 if 𝑟 < 𝑙 then
13 return False

14 else
15 if 𝑙+𝑟

2
> 𝑝 then

16 return 1

17 else
18 return 0

Let x′ ∈ B𝑝,𝜖 (x) denote a synthesized sample of x. For any
𝑘 ∈ {1, 2, . . . , 𝐾}, let x1, x2, . . . , x𝑘 be the 𝑘 nearest neighbors of

x′ in the labeled set. Also, for each 𝑖 ∈ {1, 2, . . . , 𝑘}, let 𝑦𝑖,𝑐 be the
response (independently) sampled from Bernoulli(𝐹𝑇 (x𝑖)𝑐), where
Pr(𝑦𝑖,𝑐 = 1) = 𝐹𝑇 (x𝑖)𝑐 and Pr(𝑦𝑖,𝑐 = 0) = 1 − 𝐹𝑇 (x𝑖)𝑐 . By Hoeffd-

ing’s Inequality [16], for any failure probability 𝛼 ∈ (0, 1) we have
that

Pr

{����� 1𝑘 𝑘∑︁
𝑖=1

𝐹𝑇 (x𝑖)𝑐 −
1

𝑘

𝑘∑︁
𝑖=1

𝑦𝑖,𝑐

����� ≤
√︂

1

2𝑘
ln(2/𝛼)

}
≥ 1 − 𝛼. (1)

On the other hand, we let b𝜑 (x′, x𝑖) denote the upper bound on the

deviation term |𝐹𝑇 (x′)𝑐 −𝐹𝑇 (x𝑖)𝑐 | based on the security property 𝜑

of the target model. The deviation b𝜙 (x, x′) with regard to different

764

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

security property 𝜑 is listed in Table 4. Now we have that�����𝐹𝑇 (x′)𝑐 − 1

𝑘

𝑘∑︁
𝑖=1

𝐹𝑇 (x𝑖)𝑐

����� ≤ 1

𝑘

𝑘∑︁
𝑖=1

b𝜑 (x′, x𝑖) . (2)

Combining Equations (1,2), we have that with probability at least

1 − 𝛼 , it holds that

𝐹𝑇 (x′)𝑐 ∈ [ℓ𝑘,𝑐 , 𝑟𝑘,𝑐] def

=
1

𝑘

𝑘∑︁
𝑖=1

𝑦𝑖,𝑐±
(√︂

1

2𝑘
ln(2/𝛼) + 1

𝑘

𝑘∑︁
𝑖=1

b𝜑 (x′, x𝑖)
)
,

(3)

where we use 𝑎 ± 𝑏 to denote the interval [𝑎 − 𝑏, 𝑎 + 𝑏]. We fur-

ther explain the derivation of Equations (1, 3) in Appendix 9.4 and

Equation 2 in Appendix 9.3.

Now, based on the 𝑘 nearest neighbor of x′, we have derived a

confidence interval [ℓ𝑘 , 𝑟𝑘] for 𝐹𝑇 (x′)𝑐 with confidence level (1 −
𝛼). Setting 𝛼 = (1 − [)/𝐾 and via a union bound over all 𝑘 ∈
{1, 2, . . . , 𝐾}, we have that

Pr[𝐹𝑇 (x′)𝑐 ∈ ∩𝐾𝑘=1 [ℓ𝑘 , 𝑟𝑘]] ≥ [.

Therefore, we set CI(x′) = ∩𝐾
𝑘=1
[ℓ𝑘 , 𝑟𝑘] to be our final confidence

interval for 𝐹𝑇 (x′)𝑐 with confidence level [.

4.2 Evaluation
Implementation and Settings. Given an additional sample, the

attacker determines to query the target model or to make an infer-

ence according to the validity of the confidence interval derived

in §4.1. Specifically, the attacker considers a confidence interval

as invalid if the left end point of the confidence interval is greater

than or equals the right end point, or the length of the interval

exceeds a threshold. In this circumstance, the attacker queries the

target model to label the sample. Otherwise, the attacker makes

an inference on the sample by comparing the end points of the

confidence interval to a threshold. In our implementation, for all

experiments we set _ = 2 and 𝐾 = 50 and use the marginal distribu-

tion of the class in the labeled set as the threshold. The adversary

leverages GridSearch [25] on the labeled set to compute the best

attack parameters (i.e., failure probability 𝛼 and property parameter

𝐿, 𝛿 , or 𝜖) for each dataset.

Baseline. MixMatch [4] is a holistic semi-supervised learning

(SSL) algorithm that guesses low-entropy labels for data-augmented

unlabeled examples and mixes labeled and unlabeled data using

MixUp [55]. To integrate MixMatch with MS attacks, we use the

predictions of the victim model as the labels to be guessed, and the

substitute model as the target of SSL. Specifically, we first query

the target model to label the seed dataset and the synthesized data,

and then update the substitute model as described in § 3.2 until

we reached the query budget 𝑄 . After obtaining a labeled dataset

𝑋 and a trained substitute model, we continued to synthesize 𝑄

samples as the “equal-size unlabeled set" 𝑈 in MixMatch. Then we

applied MixMatch to guess the labels, compute the combined loss 𝐿

for SSL, and used 𝐿 to update the substitute model. We use the same

data augmentation technique on MaskedThief and MixMatch. As in

[4], we set 𝑇 = 0.5 and 𝐾 = 200, and tune _ and 𝛼 on a per-dataset

basis. More specifically, we select the best value of 𝛼 from 0.1 to 1

with a step size 0.05 and the best value of _ from 10 to 100 with a

step size 10.

1 2 3 4 5 6 7 8 9 10 11
× 102

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
R

at
e

LocalInvariance

0 1 2 3 4 5 6 7 8 9 10
L × 102

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

re
nc

e
R

at
e

Lipschitzness

0.975

0.980

0.985

0.990

0.995

1.000

A
cc

ur
ac

y

0.970

0.975

0.980

0.985

0.990

0.995

1.000

A
cc

ur
ac

y

Figure 6: The inference rate and the accuracy of the substitute
training set varying the attack parameter.

Results. Overall, MaskedThief can enhance the performance of

all attack methods, as well as outperforming MixMatch, against

robust models on all five datasets. Table 5 shows the effectiveness

of MaskedThief on Spam Account dataset and Spam URL dataset,

respectively, by presenting the F1 scores of the substitute mod-

els, compared with MixMatch and the original MS attacks. The

experiment results of other datasets are shown in Appendix Table

13.

Specifically, we observe that formost robustmodels,MaskedThief

has better performance on attack methods relying on randomly gen-

erated samples (i.e., Uniform, Gaussian, and LineSearch) than JBA.

Moreover, for security properties in the same form, MaskedThief

shows better performance on general properties than on properties

specific to the training set. For example, MaskedThief increases

1.27%, 2.29%, 1.01%, 0.24%, and 0.36% F1 score of model with Lip-

schizness and increases 1.01%, 1.22%, 0.51%, 0.18%, and 0.06% F1

score of model with Lipschizness
𝑇
. The results indicate that attack-

ers can leverage more information from security properties that

have higher generalizability for MS attacks.

To understand how MaskedThief improves MS attacks against

robust models, we plot changes in the proportion of samples being

inferred by the attacker (i.e., inference rate) as well as the accuracy

of the substitute training set (i.e., dataset used to train the substitute

model) by varying the attack parameters. Figure 6 shows the results

of LocalInvariance property and Lipschitzness property on Medical

Insurance dataset, where MaskedThief applies inference to enhance

JBA(X) attack. Specifically, we fix 𝛼 = 0.1 and vary the values of the

parameters of security properties (i.e., 𝛿 for LocalInvariance model

and 𝐿 for Lipschitzness model). The labeling accuracy of the sub-

stitute training set through this semi-supervised strategy achieves

almost 99% when the attacker labels 60% additional samples by

inference instead of queries. Even when the attacker replaces 90%

queries with inference, the accuracy still achieves 97%. Thus, this

semi-supervised strategy can save a large portion of queries with

high accuracy for the adversary to label the synthesized dataset.

Under the same query budget, the adversary is rendered more

opportunities to query the model with uncertain samples, which

provides more information about the decision boundary of the

target model.

765

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Target Model Attack Approach Spam Account Dataset Spam URL Dataset
Uniform Gaussian LineSearch JBA(P) JBA(X) Uniform Gaussian LineSearch JBA(P) JBA(X)

Lipschitzness(T)

Original 84.81 84.87 85.21 89.54 90.17 63.2 64.12 65.44 81.48 75.74

MixMatch 85 85.43 85.4 89.67 90.21 63.75 64.75 65.47 81.8 75.92

MaskedThief 85.22 85.84 85.43 89.88 90.45 63.99 65 66.07 82.45 76.41

Lipschitzness

Original 83.57 85.01 84.37 90.81 90.57 63.52 65.37 67.15 82.06 76.43

MixMatch 84.1 86.2 84.95 91.02 91.05 64.15 66.21 67.88 82.75 76.9

MaskedThief 84.57 87.08 85.08 91.52 91.47 64.77 66.68 68.77 83.11 77.27

LocalInvariance(T)

Original 86.03 85.61 84.65 91.28 90.39 66.39 69.99 65.96 81.99 74.4

MixMatch 80.01 86.01 84.99 91.32 90.56 66.83 70.6 66.75 82.01 74.13

MaskedThief 86.3 86.46 85.54 91.62 90.82 67.31 71.19 66.93 82.42 74.85

LocalInvariance

Original 85.38 86.78 87.64 91.33 90.71 65.64 72.33 67.39 83.12 76.04

MixMatch 85.9 88.34 87.88 91.94 91.53 66.89 74.9 68.37 83.78 76.86

MaskedThief 86.28 89.98 88.16 92.29 91.86 67.94 75.58 69.59 84.3 76.99

SmallNeighborhood

Original 69.78 69.78 68.37 85.59 85.59 63.07 62.01 63.53 88.06 88.06

MixMatch 69.9 69.9 69.9 85.95 85.95 63.88 62.59 63.78 88.61 88.61

MaskedThief 71.38 71.18 70.06 86.75 86.71 64.47 63.31 64.57 88.8 88.68

Monotonicity

Original 69.6 69.6 74.69 87.45 87.45 63.07 62.12 65.36 88.47 88.6

MixMatch 70.1 70.1 74.82 87.6 87.6 63.87 63.24 65.91 88.9 88.9

MaskedThief 70.44 70.36 74.9 87.83 87.68 63.87 63.24 66.12 89.21 89.22

Table 5: Substitute Moddel F1 (%) on Spam Account Dataset and Spam URL Dataset.

4.3 Discussion
Sensitivity to the choice of dataset. To understand the sensitivity
of MaskedThief to the choice of dataset, we conducted the exper-

iments to measure attack improvement variance of MaskedThief

within a dataset and across datasets. Specifically, for each dataset,

we randomly select different seed datasets to evaluate attack im-

provement, and repeat the experiment five times. Figure 7,8 in Ap-

pendix 9.6 show the distribution of attack improvement ofMaskedThief

on each dataset and across five datasets, when compared with the

original MS attacks (i.e., Uniform, Gaussia, LineSearch, JBA(X),

JBA(P)). Experiment results show that attack improvement vari-

ance within a dataset and across five datasets are all small, with a

standard deviation of 0.0008 and 0.0018, respectively, on average.

This indicated the performance of MaskedThief is not sensitive to

the choice of dataset.

Attack assumption. In MaskedThief, the adversary needs to know

the form of the security properties, while the exact values of the

property parameters can be unknown. The values of property pa-

rameters provide a guarantee of inference accuracy in our theo-

retical analysis in §4.1, but they are not necessarily known by the

adversary in practice, as mentioned in §4.2. Particularly, our experi-

ments use GridSearch [25] to select the best attack parameters. The

results in Table 5 do not rely on the values of property parameters.

5 ROBUST MODEL WITH PRIVACY
PROPERTY

In this section, we introduce BoundaryFuzz, a privacy property to

defend against MS attacks on robust models. The state-of-the-art

model stealing defense methods mitigate the stolen risks of models

by selectively adding perturbations to model outputs. Although

such methods achieve satisfying accuracy-privacy trade-off, it is

difficult to maintain the security properties of the defended model.

This is because that the inputs of the security properties can be

selected by the defender to add perturbations. In this case, the

constraints on their corresponding outputs will be undermined.

In contrast, we propose a privacy property which fits well into

the process of robust training and can be enforced together with

the security properties. Such a defense strategy causes a moderate

performance drop in both accuracy and security while protecting

the confidentiality of model decision boundary.

5.1 Methodology
Our key idea is to protect the query responses near the decision

boundary against most MS attacks. We apply the definition of

Boundary-Sensitive Zone and Sensitive Query in [58]. The boundary-

sensitive zone of model 𝑓\ is the feature space adjacent to the

decision boundary 𝑍Δ = {𝑥 ∈ 𝑅𝑑 |dist(x, 𝑓\) < Δ)}, where Δ is a

positive constant around 0, dist(·) measures the distance between a

feature vector x and the decision boundary. A query x is determined

sensitive to the model 𝑓\ iff. ∃𝑥 ′ ∈ B𝑝,Δ (x), such that x and x′ lie on
the different sides of the decision boundary of 𝑓\ . In this paper, we

use argmax𝑐∈𝐶 𝑓\ (x)𝑐 ≠ argmax𝑐 𝑓\ (x′)𝑐 rather than 𝑦 (x) ≠ 𝑦 (x′)
to represent that x and x′ are on the different sides of the decision

boundary. [58] proved that ∃Δ𝑖 ∈ Δ · 𝐼 , 𝑦 (𝑥 ± Δ𝑖) ≠ 𝑦 (𝑥) is a
sufficient condition for 𝑥 to be a sensitive query, where 𝐼 is the

identity matrix, Δ𝑖 is the projected interval on some dimension 𝑖 , 𝑥

and 𝑥 ± Δ𝑖 are identical in dimensions other than 𝑖 and differ Δ in

dimension 𝑖 . Following this, we formally define our Y-Soft Boundary

Privacy (Y-SBP) and privacy-preserving constraint, BoundaryFuzz,

against MS attacks, and explain how BoundaryFuzz leads to Y-SBP.

Definition 1 (Y-Soft Boundary Privacy (Y-SBP)). A classifier 𝐹\
achieves Y-soft boundary privacy, if and only if for any three queries

x1, x2 and x3 in the boundary-sensitive zone 𝑍Δ, the following

766

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

SP of Target Model Defense
Test Performance

CA (%)
Decrease in Substitute Model’s F1 (%)

Acc (%) F1 (%) Uniform Gaussian LineSearch JBA(P) JBA(X)

Lipschitznessness(T)

PredictionPoisoning 96.15 82.14 –.– 0.64 3.48 1.05 2.27 4.32
AdaptiveMisinformation 94.99 75.70 –.– 2.66 3.02 1.88 2.66 1.31

BoundaryFuzz 96.24 84.46 94.52 6.6 5.44 3.29 0.36 3.36

Lipschitznessness

PredictionPoisoning 96.23 83.76 –.– 3.80 7.44 3.00 1.19 6.40

AdaptiveMisinformation 94.99 78.97 –.– 4.27 6.84 2.24 1.25 7.20

BoundaryFuzz 96.34 84.55 95.17 8.80 9.80 3.85 2.52 7.58

LocalInvariance(T)

PredictionPoisoning 96.23 83.71 –.– 1.94 1.29 0.20 4.03 4.49

AdaptiveMisinformation 94.89 76.65 –.– 2.41 3.96 0.94 5.71 5.03
BoundaryFuzz 96.24 84.08 95.38 1.44 3.83 3.02 5.29 4.74

LocalInvariance

PredictionPoisoning 96.15 83.19 –.– 0.70 1.11 1.53 2.97 1.81

AdaptiveMisinformation 94.89 78.01 –.– 0.60 1.18 0.64 5.69 3.82

BoundaryFuzz 96.24 84.46 94.13 2.11 2.75 2.53 8.12 8.14

SmallNeighborhood

PredictionPoisoning 98.60 90.91 –.– 1.35 1.69 0.61 1.01 0.41

AdaptiveMisinformation 97.67 83.87 –.– 1.35 1.69 0.61 1.01 0.41

BoundaryFuzz 97.10 87.24 100.00 2.61 2.35 1.24 7.71 4.91

Monotonicity

PredictionPoisoning 98.60 89.66 –.– 1.53 0.72 0.43 1.30 1.30

AdaptiveMisinformation 97.67 81.48 –.– 1.53 0.72 0.43 1.30 1.30

BoundaryFuzz 97.01 87.24 100.00 2.61 2.35 1.24 7.71 4.94

Table 6: Model Stealing Defense effectiveness on Medical Insurance Dataset. CA stands for the constraint accuracy of the
privacy property.

inequality always holds for the label outputs 𝑦 (x1), 𝑦 (x2), and
𝑦 (x3).

𝑒−Y ≤ Pr[𝑦 (x1), 𝑦 (x2) |x1 q x2]
Pr[𝑦 (x1), 𝑦 (x3) |x1 / x3]

≤ 𝑒Y ,

where x q x′ is short for argmax𝑐 𝑓\ (x)𝑐 = argmax𝑐 𝑓\ (x′)𝑐 and
x / x′ is short for argmax𝑐 𝑓\ (x)𝑐 ≠ argmax𝑐 𝑓\ (x′)𝑐 . Y-SBP guar-

antees that the model’s responses on two sensitive queries are

indistinguishable for the adversary to determine the true decision

boundary.

Property 5 (BoundaryFuzz).

∀x ∈ X, argmax

𝑐
𝑓\ (x)𝑐 ≠ argmax

𝑐
𝑓\ (x + Δ · 𝐼)𝑐

⇒ ||𝐹\ (x) | |2 <

√︂
𝑒Y

𝑒Y + 1

Theorem 1. Models with BoundaryFuzz property satisfy Y-SBP
when C=2.

We detail the proof of Theorem 3 in Appendix 9.7. This can be

generalized to cases where 𝐶 > 2 (i.e., multi-label classification) as

shown in Appendix 9.8.

5.2 Evaluation
We apply DL2 [13] and LogicEnsemble [10] to train BoundaryFuzz

along with security properties and evaluate the defense effective-

ness against MaskedThief.

Implementation. To train BoundaryFuzz along with LocalInvari-

ance and Lipschitzness, we rewrite BoundaryFuzzfollowing the

definition of the security properties in DL2 [13] :

∀x ∈ Xtr,∀x̃ ∈ B𝑝,𝜖x argmax

𝑐
𝑓\ (x̃)𝑐 ≠ argmax

𝑐
𝑓\ (x̃ + Δ · 𝐼)𝑐

⇒ ||𝐹\ (x̃) | |2 <

√︂
𝑒Y

𝑒Y + 1
where ∀𝑥 ∈ X𝑡𝑟 ,∀𝑥 ∈ B𝑝,𝜖 (𝑥) indicates moderate generalizability.

To train BoundaryFuzz alongwith SmallNeighborhood andMono-

tonicity, we rewrite BoundaryFuzzfollowing the definition of the

security properties in LogicEnsemble [10] :

∀x, x′ ∈ X, argmax

𝑐
𝑓\ (x)𝑐 ≠ argmax

𝑐
𝑓\ (x′ + Δ · 𝐼)𝑐

⇒ ||𝐹\ (x) | |2 <

√︂
𝑒Y

𝑒Y + 1 ∧ ||𝐹\ (x
′) | |2 <

√︂
𝑒Y

𝑒Y + 1
where ∀𝑥, 𝑥 ′ ∈ X indicates high generalizability. Note that Bound-

aryFuzz cannot be trained with low generalizability because it

cannot be enforced on the training data.

Settings. For security properties, we use the same constraint pa-

rameters as in §3. We select the best values for the parameters in

BoundaryFuzz to train with each security property on each dataset.

The best value of the parameter is determined as the one that in-

volves the largest proportion of samples near the decision boundary

and forces the largest degree of uncertainty in their predictions.

In our implementation, we first set Δ = 0.1, Y = 0.001 and train

BoundaryFuzz with each security property on the target models.

If all properties are successfully trained, we double the value of

Δ to involve more suspicious samples to the privacy constraint.

Otherwise, we reduce the value of Δ by half to loosen the con-

straint. If the properties cannot be trained until Δ reaches 0.01, we

increase the value of Y to further loose the constraint. In particular,

767

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Target Model Defense Test Performance CA (%) Decrease in Substitute Model’s F1 (%)
Acc (%) F1 (%) Uniform Gaussian LineSearch JBA(P) JBA(X)

Lipschitzness(T)

PredictionPoisoning 97.60 97.12 –.– 2.37 1.64 3.95 0.77 0.64

AdaptiveMisinformation 97.86 97.63 –.– 2.66 1.87 2.92 0.35 0.57

BoundaryFuzz 98.23 98.01 96.24 3.54 4.31 3.89 2.75 2.42

Lipschitzness

PredictionPoisoning 96.36 96.12 –.– 1.02 0.94 2.25 1.23 0.94

AdaptiveMisinformation 96.43 96.25 –.– 0.98 1.58 1.45 1.34 1.29

BoundaryFuzz 97.02 96.53 98.56 3.25 4.31 4.67 3.21 3.35

LocalInvariance(T)

PredictionPoisoning 92.68 93.07 –.– 1.05 1.79 0.19 1.01 1.43

AdaptiveMisinformation 97.88 97.45 –.– 167 2.31 0.99 2.92 3.04
BoundaryFuzz 98.39 98.19 97.50 3.32 2.96 2.03 2.37 2.94

LocalInvariance

PredictionPoisoning 97.66 97.25 –.– 1.46 4.77 4.12 2.09 1.94

AdaptiveMisinformation 92.47 92.95 –.– 2.01 3.37 3.12 1.98 2.64

BoundaryFuzz 98.12 97.84 99.89 4.14 5.23 4.58 3.41 3.29

SmallNeighborhood

PredictionPoisoning 97.57 97.21 –.– 1.94 3.05 5.49 1.63 1.78

AdaptiveMisinformation 97.43 97.08 –.– 2.14 3.17 5.6 1.34 1.99

BoundaryFuzz 98.06 97.82 100.00 4.25 4.12 5.80 2.31 3.16

Monotonicity

PredictionPoisoning 96.21 95.98 –.– 1.65 3.44 2.70 3.69 2.85

AdaptiveMisinformation 90.23 90.58 –.– 1.86 3.13 2.32 2.15 1.16

BoundaryFuzz 94.45 94.10 100.00 4.50 4.75 5.21 4.39 4.77

Table 7: Model Stealing Defense effectiveness on Spam URL Dataset. CA stands for the constraint accuracy of the privacy
property.

we multiply the value of Y by 10 each time until it reaches 0.1. For

LocalInvariance and Lipschitzness, we tune the value of 𝜖 using

the same method as for Δ while starting from 1 with step size 1.

The specific values of the constraint parameters are detailed in

Appendix 9.2.

Results. Similar to §3, we evaluate the decrease in the substitute

model’s test F1 when applying the defense. All results are averaged

on five independent tests. We also measure the test accuracy and

test F1 of the defended target model to compare the performance

drop in classification caused by different defense methods.

Results on the Medical Insurance dataset are presented in Ta-

ble 6. In most cases, our method leads to the highest F1 decrease of

substitute models. Specifically, for models with Lipschitzness, Local-

Invariance, SmallNeighborhood, and Monotonicity, BoundaryFuzz

outperforms other defense methods against all attacks. For models

with Lipshitzness
𝑇
, AdaptiveMisinformation shows the best per-

formance against JBA(P) and PredictionPoisoning shows the best

performance against JBA(X). For models with LocalInvariance
𝑇
,

AdaptiveMisinformation shows the best performance against Ran-

dom Query attacks (i.e., Uniform and Gaussian), and Jacobian-

based Augmentation attacks (i.e., JBA(P) and JBA(X)). We spec-

ulate that BoundaryFuzz is less effective on LocalInvariance
𝑇
and

Lipshitzness
𝑇
for the security constraints and privacy-preserving

constraints in this setting are both trained only on the training

data. In this case, most synthesized samples are exclusive to the

constraints.

In addition, we observe that BoundaryFuzz causes a moderate

drop in the classification performance. For Lipschitzness
𝑇
, Lips-

chitzness, LocalInvariance
𝑇
, and LocalInvariance, models defended

by BoundaryFuzz achieve the highest test accuracy and f1. Instead

of directly perturbing model outputs, BoundaryFuzz searches for

samples near the decision boundary through robust training meth-

ods and enforcing their predictions to be uncertain, which might

Property/Dataset MI CC SA SU CJ
Lipschitzness(T) 82.98 93.86 74.04 80.64 78.06

Lipschitzness 89.72 90.03 62.23 87.12 82.14

LocalInvariance(T) 85.4 90.1 95.93 97.2 100

LocalInvariance 91.55 95.27 96.39 98.21 100

Table 8: Constraint accuracy (%) of security properties trained
with BoundaryFuzz.

result in less performance drop. However, BoundaryFuzz causes the

maximum performance drop for SmallNeighborhood and Mono-

tonicity. We consider the reason as training global security prop-

erties and global privacy-preserving properties simultaneously is

more difficult. However, the performance drop of BoundaryFuzz is

still acceptable compared to other defense methods. The defense

on the Credit Card dataset and the Spam Account dataset show

similar results, which are presented in Table 14 and Table 7 in Ap-

pendix 9.10. In summary, our defense method can easily fit into

robust training methods to achieve a promising trade-off between

accuracy, security, and privacy. To evaluate the impact of Boundary-

Fuzz on the original security properties, we present the constraint

accuracy of the security properties after incorporating Boundary-

Fuzz into the robust training process. Specifically, as LogicEnsemble

trains models with global security properties [10], the constraint

accuracy of SmallNeighborhood and Monotonicity is both 100%.

The constraint accuracy of LocalInvariance and Lipschitzness is

shown in Table 8.

6 RELATEDWORKS
Previous works have investigated the influencing factors of MS

attacks. Steal-ML [49] proposed equation-solving and path-finding

768

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Yue Qin et al.

attacks and evaluated their sensitivity to the degree of the pre-

cision (i.e., rounding decimals) of the target model’s predictions.

PRADA [20] and SEAT [57] evaluated Jacobian-based attacks [39]

and LineSearch attacks [49] and demonstrated that: 1) Jacobian-

based attacks are the most effective method when the attacker has

access to a small set of samples from the original training set, and 2)

more natural seed samples results in higher prediction agreement.

In addition, [20] claimed the necessity of natural seed samples to

train a substitute model with a high agreement. It also concluded

that cross-validated hyperparameters outperform heuristics or the

same settings of the target model, and similar architecture com-

plexity between the target and the substitute model yields high pre-

dictive performance. ML-Doctor [30] performed a systematic eval-

uation on four privacy attacks (i.e., membership inference, model

inversion attribute inference, and model stealing) and investigated

the common factors that influence their performance. It observed

that data complexity is negatively associated with model stealing

performance. Also, using a part of training data as seed samples

results in worse model stealing performance than using an external

natural dataset which has a similar distribution with the training

data. The author explained this as the query results of training data

lead to more confident posteriors which contain less information

for the adversary to exploit.

The closest work to our study are [11, 29, 46], which investi-

gated privacy impacts on model robustness. However, all of them

focus on membership inference (MI) attacks instead of MS attack.

Song et al. [46] revealed that adversarially robust models can be

more vulnerable to MI since the smooth predictions around training

examples may not generalize well to testing examples. Choquette-

Choo et al. [11] proposed label-only MI by exploiting the robustness

of a model’s predicted labels under perturbations to obtain a fine-

grained membership signal. Following [11], Li et al. [29] relaxed the

assumptions of the adversary’s knowledge (e.g., training algorithm,

shadow dataset, etc.) in [11] and proposed a threshold-choosing

method for boundary attack. In [11, 29], the attacker can iden-

tify the membership of the sample in a label-only scenario due to

the train-test gap between model robustness around training and

testing points. All three work indicate that robust models suffer

from additional membership inference risks due to poor robustness
generalization. Experiments in [11, 29, 46] demonstrate such risks

can be mitigated using existing regularization techniques, such as

domain-adaptation-based regularization [45], which can improve

robustness generalizability.

Different from [11, 29, 46], in this paper, we explore the model

stealing risks of robust models enforcing security properties. Our

results reveal that models trained with security properties, espe-

cially those with high robustness generalizability instead of poor

generalizability in MI attacks, suffer from larger model stealing

risks. In addition, our study first-time proposes a privacy property

which is compatible with security properties for ML models to

mitigate such risks.

7 CONCLUSION
In this paper, we investigate privacy impacts on four security prop-

erties (i.e., LocalInvariance, Lipschitzness, SmallNeighborhood and

Monotonicity) of robust ML models on five real-world security

datasets. By measuring the success of three typical MS attacks (in

five variants) and two state-of-the-art MS defenses on robust models

trained with four security properties, we find that all robust models

are more vulnerable to MS attacks than their natural models. Even

worse, MS defenses are less effective on those robust models. This

is because the security property of the target model results in more

stable and smooth predictions, which enhances the query effective-

ness of MS attackers and hinders MS defenders from distinguishing

suspicious samples from benign ones. Given the above findings, we

propose MaskedThief, an optimized MS attack specific to robust

models, which improves existing MS attacks by exploiting informa-

tion in SPs. To mitigate such privacy risk on models trained with

security properties, we design a privacy property, BoundaryFuzz,

which enforces the model predictions on inputs near the decision

boundary to be uncertain. Experimental results demonstrate the

defense effectiveness of BoundaryFuzz, which sheds lights on ML

models satisfying goals in accuracy, security, and privacy altogether.

8 ACKNOWLEDGMENT
We appreciate Dr. Yizheng Chen and Dr. Tianhao Wang for their

valuable discussions and feedback. We thank the anonymous re-

viewers for their constructive suggestions. This work is supported

in part by the NSF CNS-1850725, the Indiana University Institute

for Advanced Study (IAS) and the Grant Thornton Institute.

REFERENCES
[1] 2019. Medical Insurance Dataset. https://www.kaggle.com/datasets/

rajgupta2019/medical-insurance-dataset.

[2] 2022. Customer Churn Dataset. https://www.kaggle.com/code/yejiseoung/

building-gradient-boosting-pipeline-0-99-roc-auc/data.

[3] 2023. Code, dataset, and full version paper. https://sites.google.com/view/

maskedthief/home.

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,

and Colin A Raffel. 2019. Mixmatch: A holistic approach to semi-supervised

learning. Advances in neural information processing systems 32 (2019).
[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against

machine learning at test time. In Joint European conference on machine learning
and knowledge discovery in databases. Springer, 387–402.

[6] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In 2017 ieee symposium on security and privacy (sp). Ieee, 39–57.
[7] Melissa Chase, Esha Ghosh, and Saeed Mahloujifar. 2021. Property inference

from poisoning. arXiv preprint arXiv:2101.11073 (2021).
[8] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017.

Zoo: Zeroth order optimization based black-box attacks to deep neural networks

without training substitute models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security. 15–26.

[9] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu

Cho, Kailong Chen, et al. 2015. Xgboost: extreme gradient boosting. R package
version 0.4-2 1, 4 (2015), 1–4.

[10] Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David Wag-

ner. 2021. Learning security classifiers with verified global robustness properties.

In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. 477–494.

[11] Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nico-

las Papernot. 2021. Label-only membership inference attacks. In International
Conference on Machine Learning. PMLR, 1964–1974.

[12] Jacson Rodrigues Correia-Silva, Rodrigo F Berriel, Claudine Badue, Alberto F de

Souza, and Thiago Oliveira-Santos. 2018. Copycat cnn: Stealing knowledge by

persuading confession with random non-labeled data. In 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[13] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang,

and Martin Vechev. 2019. Dl2: Training and querying neural networks with logic.

In International Conference on Machine Learning. PMLR, 1931–1941.

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[15] Xinlei He, Hongbin Liu, Neil Zhenqiang Gong, and Yang Zhang. 2022. Semi-Leak:

Membership Inference Attacks Against Semi-supervised Learning. In European
Conference on Computer Vision. Springer, 365–381.

769

Stolen Risks of Models with Security Properties CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[16] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. In The collected works of Wassily Hoeffding. Springer, 409–426.
[17] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas

Papernot. 2020. High accuracy and high fidelity extraction of neural networks.

In 29th USENIX security symposium (USENIX Security 20). 1345–1362.
[18] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas

Papernot. 2020. Entangled watermarks as a defense against model extraction.

arXiv preprint arXiv:2002.12200 (2020).
[19] Jinyuan Jia, Binghui Wang, Xiaoyu Cao, Hongbin Liu, and Neil Zhenqiang Gong.

2020. Almost tight L0-norm certified robustness of top-k predictions against

adversarial perturbations. arXiv preprint arXiv:2011.07633 (2020).
[20] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. 2019. PRADA:

protecting against DNNmodel stealing attacks. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 512–527.

[21] Sanjay Kariyappa and Moinuddin K Qureshi. 2020. Defending against model

stealing attacks with adaptive misinformation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 770–778.

[22] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. 2018.

Model extraction warning in mlaas paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference. 371–380.

[23] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason, Andrew

Miller, Nikita Borisov, Manos Antonakakis, and Michael Bailey. 2019. Outguard:

Detecting in-browser covert cryptocurrency mining in the wild. In The World
Wide Web Conference. 840–852.

[24] Heeyoung Kwon, Mirza Basim Baig, and Leman Akoglu. 2017. A domain-agnostic

approach to spam-url detection via redirects. In Advances in Knowledge Discovery
and Data Mining: 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea,
May 23-26, 2017, Proceedings, Part II 21. Springer, 220–232.

[25] Steven M LaValle, Michael S Branicky, and Stephen R Lindemann. 2004. On

the relationship between classical grid search and probabilistic roadmaps. The
International Journal of Robotics Research 23, 7-8 (2004), 673–692.

[26] Peter D Lax and Maria Shea Terrell. 2014. Calculus with applications. Springer.
[27] K Lee, BD Eoff, and J Caverlee. 2011. A long-term study of content polluters on

twitter. ICWSM, seven months with the devils (2011).
[28] Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. 2019. Defending

against neural network model stealing attacks using deceptive perturbations. In

2019 IEEE Security and Privacy Workshops (SPW). IEEE, 43–49.
[29] Zheng Li and Yang Zhang. 2021. Membership leakage in label-only exposures. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 880–895.

[30] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,

Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic

Risk Assessment of Inference Attacks Against Machine Learning Models. In 31st
USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12,
2022, Kevin R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 4525–4542.

https://www.usenix.org/conference/usenixsecurity22/presentation/liu-yugeng

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083 (2017).
[32] Shagufta Mehnaz, Ninghui Li, and Elisa Bertino. 2020. Black-box model in-

version attribute inference attacks on classification models. arXiv preprint
arXiv:2012.03404 (2020).

[33] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract

interpretation for provably robust neural networks. In International Conference
on Machine Learning. PMLR, 3578–3586.

[34] Fionn Murtagh. 1991. Multilayer perceptrons for classification and regression.

Neurocomputing 2, 5-6 (1991), 183–197.

[35] Daryna Oliynyk, Rudolf Mayer, and Andreas Rauber. 2022. I Know What You

Trained Last Summer: A Survey on Stealing Machine Learning Models and

Defences. arXiv preprint arXiv:2206.08451 (2022).
[36] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:

Stealing functionality of black-box models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. 4954–4963.

[37] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2020. Prediction Poison-

ing: Towards Defenses Against DNN Model Stealing Attacks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=SyevYxHtDB

[38] Soham Pal, Yash Gupta, Aditya Kanade, and Shirish Shevade. 2021. Stateful

Detection of Model Extraction Attacks. arXiv preprint arXiv:2107.05166 (2021).

[39] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia conference on computer and
communications security. 506–519.

[40] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. 2016. The limitations of deep learning in adversarial

settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372–387.

[41] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2019.

CLN2INV: learning loop invariants with continuous logic networks. arXiv
preprint arXiv:1909.11542 (2019).

[42] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and

Michael Backes. 2018. Ml-leaks: Model and data independent membership

inference attacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246 (2018).

[43] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[44] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. 2017. Certi-

fying some distributional robustness with principled adversarial training. arXiv
preprint arXiv:1710.10571 (2017).

[45] Chuanbiao Song, Kun He, Liwei Wang, and John E Hopcroft. 2018. Improving

the generalization of adversarial training with domain adaptation. arXiv preprint
arXiv:1810.00740 (2018).

[46] Liwei Song, Reza Shokri, and Prateek Mittal. 2019. Privacy Risks of Securing

Machine Learning Models against Adversarial Examples. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder,

XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 241–257. https://doi.org/10.

1145/3319535.3354211

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[48] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199 (2013).
[49] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[50] Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing hyperparameters in

machine learning. In 2018 IEEE symposium on security and privacy (SP). IEEE,
36–52.

[51] Eric Wong and Zico Kolter. 2018. Provable defenses against adversarial examples

via the convex outer adversarial polytope. In International Conference on Machine
Learning. PMLR, 5286–5295.

[52] Xiaojun Xu, Linyi Li, and Bo Li. 2022. LOT: Layer-wise Orthogonal Training on

Improving l2 Certified Robustness. NeurIPS (2022).
[53] Zhuolin Yang, Zhikuan Zhao, Boxin Wang, Jiawei Zhang, Linyi Li, Hengzhi Pei,

Bojan Karlaš, Ji Liu, Heng Guo, Ce Zhang, and Bo Li. 2022. Improving Certified

Robustness via Statistical Learning with Logical Reasoning. NeurIPS (2022).
[54] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun Tsai, Tsung-Yi Ho, and Yier

Jin. 2020. CloudLeak: Large-Scale Deep Learning Models Stealing Through

Adversarial Examples.. In NDSS.
[55] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.

mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[56] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing

Huang, and Ian Molloy. 2018. Protecting intellectual property of deep neural

networks with watermarking. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. 159–172.

[57] Zhanyuan Zhang, Yizheng Chen, and David Wagner. 2021. Seat: Similarity

encoder by adversarial training for detecting model extraction attack queries.

In Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security.
37–48.

[58] Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. 2019. Bdpl: A

boundary differentially private layer against machine learning model extraction

attacks. In European Symposium on Research in Computer Security. Springer,
66–83.

770

