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ABSTRACT
Cybersecurity vulnerability information is often sourced frommulti-
ple channels, such as government vulnerability repositories, individ-
uallymaintained vulnerability-gathering platforms, or vulnerability-
disclosure email lists and forums. Integrating vulnerability infor-
mation from different channels enables comprehensive threat as-
sessment and quick deployment to various security mechanisms.
However, automatic integration of vulnerability information, espe-
cially those lacking decisive information (e.g., CVE-ID), is hindered
by the limitations of today’s entity alignment techniques.

In our study, we annotate and release the first cybersecurity-
domain vulnerability alignment dataset, and highlight the unique
characteristics of security entities, including the inconsistent vul-
nerability artifacts of identical vulnerability (e.g., impact and af-
fected version) in different vulnerability repositories. Based on these
characteristics, we propose an entity alignment model, CEAM, for
integrating vulnerability information from multiple sources. CEAM
equips graph neural network-based entity alignment techniques
with two application-driven mechanisms: asymmetric masked ag-
gregation and partitioned attention. These techniques selectively
aggregate vulnerability artifacts to learn the semantic embeddings
for vulnerabilities by an asymmetric mask, while ensuring that the
artifacts critical to the vulnerability identification are always taken
more consideration. Experimental results on vulnerability align-
ment datasets demonstrate that CEAM significantly outperforms
state-of-the-art entity alignment methods.
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1 INTRODUCTION
There is a wealth of cybersecurity vulnerability information avail-
able through various channels: public vulnerability databases (e.g.,
the National Vulnerability Database [71]), individual-maintained
vulnerability-gathering platforms (e.g., SecurityFocus [14]), security
advisories of different vendors (e.g., Palo Alto Networks Security
Advisories [41], Android Security Bulletins [30]), vulnerability dis-
closure email lists [15, 17–19] and forums [42], and many others.
These vulnerability repositories contain a range of vulnerability
artifacts, such as vulnerability type, affected device information,
vulnerability severity score. This contextual information is essential
for security practitioners to prioritize vulnerability remediation and
preventing attacks.

However, the vulnerability artifacts of an identical vulnerabil-
ity typically vary across different vulnerability repositories. As an
example, the Linux kernel evolves quickly and has a large number
of versions and derivatives such as Android, Ubuntu, Red Hat, and
various IoT systems. However, for the Linux kernel-related vul-
nerabilities, the NVD often only records the vulnerability artifacts
associated with limited Linux kernel versions and derivatives, while
for identical Linux kernel vulnerabilities, the vulnerability artifacts
(e.g., affected device and version) recorded in the security advisories
of mobile device vendors can supplement those in the NVD [25].
Given an organization with both Red Hat and Android devices,
without comprehensive vulnerability artifacts from both NVD and
the Android security advisory, once a Linux kernel vulnerability
was found, the organization cannot fully respond in a timely man-
ner. Hence, integrating vulnerability information from different
channels is essential for an organization to gain comprehensive and
credible vulnerability information associated with different devices
and OS derivatives, identify early signs of cybersecurity risk, and
effectively contain the threat with proper means.
Challenges in vulnerability alignment. However, it is non-trivial
to link the same vulnerabilities among different sources, especially
for those newly-reported vulnerabilities without unique identi-
fiers (e.g., CVE-ID), or those from vulnerability reports with less-
structured format. For instance, news reports [4, 7] indicate that
over 42% of vulnerabilities listed in VulnDB [5] do not have CVE-
IDs. This creates a situation where vulnerable software products
may remain unmaintained and untracked, making it challenging
for security engineers to detect and fix vulnerabilities that might
impact their products. IT professionals have also expressed con-
cerns [10, 20] about the lack of CVE-IDs, which hinders them from
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cross-referencing vulnerabilities documented by other reposito-
ries. Moreover, widely used scanning tools rely on vulnerability
databases indexed by CVE-IDs to determine if products contain
vulnerable software [6]. Additionally, as reported in [54], the vul-
nerabilities in the IoT vulnerability disclosure forums were typically
released before obtaining CVE-IDs. Despite the lack of CVE-IDs,
these forums often contain valuable vulnerability artifacts, such as
proof of concept (PoC), which is crucial for efficient vulnerability as-
sessment and patch generation. However, multiple commonly-used
public vulnerability repositories, such as the National Vulnerability
Database (NVD), do not provide such detailed information. To this
end, organizations have expended significant human efforts to estab-
lish links between those IoT vulnerabilities and those in the NVD.

The critical aspect of vulnerability information integration and
management is linking security entities (i.e., vulnerabilities) that
pertain to the same real-world entity across various data sources.
This is a form of entity alignment (EA) problem [79] that arises in
vulnerability repositories, when the repositories can be represented
as vulnerability knowledge graphs (KG) that programmatically con-
structed from structured or semi-structured vulnerability reports.
However, to the best of our knowledge, no previous research has
explored cybersecurity entity alignment techniques tailored to the
application of vulnerability artifact integration.
CEAM: design and implementation. Traditional entity align-
ment methods, which rely on hand-crafted rules, are often less ef-
fective in aligning security entities across different KGs due to vari-
ations in their structures and textual features [92]. Recent work [59]
uses Knowledge Graph Embedding (KGE) models, trained to mea-
sure triple plausibility (e.g., TransE [46]) to align equivalent entities
into a unified vector space based on a few seed alignments. How-
ever, such methods are not suitable for security entity alignment as
KGE models cannot generate embeddings for new entities added to
the KG after training. In the context of vulnerability information,
timely updates are crucial, and it is impractical to retrain the KG
embedding model on the entire augmented graph each time new
security entities, such as vulnerabilities, are discovered. Mao et
al. [67] consider entity alignment as an assignment problem be-
tween two isomorphic graphs by reordering the entity node indices.
However, adapting such techniques for security entity alignment
is challenging due to the significant differences in graph topology
between security KGs constructed from different repositories, as
observed in our measurements in §3.4.

In recent years, Graph Neural Network (GNN) has shown great
success in open-domain entity alignment tasks [68, 70, 88]. This
mechanism allows for recursive information propagation among
neighbors to learn structure-aware entity representations. However,
their core assumptions that identical entities have similar attributes
and neighbors and vice versa do not hold for cross-platform secu-
rity entities. In our study, we observe identical vulnerability shows
inconsistent attributes (vulnerability artifacts, e.g, impact and affected
version) in different vulnerability repositories (see §3.4). The main
reason is that a vulnerability is sometimes assessed considering
different execution environments such as operating systems, archi-
tectures, configurations, and organization policies, which can lead
to different vulnerability artifacts. In addition, different repositories
provide vulnerability artifacts in different granularity (e.g., level

of details), especially for vulnerabilities disclosed in maillists and
forums. We also observe that different vulnerabilities can be associ-
ated with a considerable number of identical artifacts, leading to
false positives of the alignment (see §3.4).

Given the aforementioned observations in the application of
vulnerability alignment, we propose an entity alignment model,
CEAM, tailored for the cybersecurity domain. It equips GNN-based
entity alignment model with two application-driven designs: asym-
metric masked aggregation and partitioned attention, to address the
above challenges. We first aggregate selective attribute informa-
tion to learn the semantic embeddings for security entities by an
asymmetric mask. It computes similar representations for the same
vulnerabilities with inconsistent artifacts in different repositories,
by scaling down a partial representation of the inconsistent relation
(e.g., has_product). This will alleviate the false negatives caused
by inconsistencies between positive pairs. Further, we use GNNs
to update entity embeddings with structural information based on
graph topology, where the partitioned attention mechanism en-
sures that the artifacts critical to the vulnerability identification are
always taken more consideration during the propagation, which
cannot be guaranteed by traditional neural networks. Finally, we
use two-layer MLP (Mutilayer Perceptron) to decide whether two
entities are identical according to the discrepancy between entity
embeddings learned by GNNs.

We have implemented CEAM and evaluated it on two anno-
tated entity alignment datasets. We found that CEAM achieves the
precision of 73.4%, the recall of 91.7% and the F1 score of 81.5%,
which outperform the state-of-the-art entity alignment models
CG-MuAlign [95], PARIS [79] and PRASE [75]. Particularly, our
experiments show that the proposed two innovative mechanisms
asymmetric masked aggregation and partitioned attention collec-
tively improve alignment quality by 10.3% of F1 score on average.
Contributions. The contributions of this paper are as follows:
•We proposed an entity alignment model, named CEAM, tailored
for the application of vulnerability inconsistency identification
across different vulnerability repositories.
•We released the first annotated datasets for cybersecurity-domain
entity alignment, and unveil their characteristics that challenge
the assumption made in traditional entity alignment tasks [45, 88,
95]. These characteristics include inconsistencies in vulnerability
artifacts for identical vulnerabilities across different repositories,
as well as similarities in artifacts for different vulnerabilities.
•We discussed two potential applications of CEAM: (1) supplement-
ing vulnerability artifacts across repositories and (2) debunking
erroneous vulnerability artifacts.
• Our code, datasets, and full-version paper with Appendix are
available at [40].

2 BACKGROUND
2.1 Vulnerability Artifacts
In Table 1, we present examples of common vulnerability artifacts
used in our study. Specifically, CVE is the common identifiers of cy-
bersecurity vulnerabilities. Weakness characterizes the category of
the vulnerability, and CWE_ID is the identifier of Weakness. Product
and Vendor are the name and the provider of the affected products
(e.g., software, hardware, device, etc). Version is short for affected
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versions. Impact is the consequence of exploiting the vulnerabil-
ity. Discoverer is the name of the person or the organization who
reported the vulnerability. Note that there exists relation between
vulnerability artifacts. For example, the relation between a Vulnera-
bility entity and a Discoverer is hasDiscoverer, which can be denoted
as a triplet (ℎ, 𝑟, 𝑡) where the relation 𝑟 is decided by the types of
the head entity ℎ and the tail entity 𝑡 and is in the form of hasTail.
CVSS and CVSS metrics. The Common Vulnerability Scoring
System (CVSS) is an open and widely-adopted vulnerability sever-
ity scoring standard [34], which suggests various kinds of critical
vulnerability artifacts associated with vulnerability severity. More
specifically, in CVSSv3.1, vulnerability artifacts consist of eight di-
mensions in the base metrics: Attack Vector (AV), Attack Complexity
(AC), Privileges Required (PR) and User Interaction (UI), Scope (S),
Confidentiality (C), Integrity (I) and Availability (A). For instance,
the artifact of AV reflects the context by which vulnerability ex-
ploitation is possible (e.g., remotely exploit); and the artifact of AC
describes the conditions beyond the attacker’s control that must
exist in order to exploit the vulnerability.

There also exist artifacts which measure the current state of
exploit techniques or code availability, namely temporal metrics,
i.e., Exploit Code Maturity (E), the existence of any patches or
workarounds, i.e., Remediation Level (RL), or the confidence in
the description of a vulnerability, i.e., Report Confidence (RC). A
CVSS metric value (e.g., AV:N ) represents a pair of a CVSS met-
ric and its value, i.e., the Attack Vector to be Network. The arti-
fact of the CVSS score is calculated according to a correspond-
ing CVSS vector aggregating CVSS metric values. For example, a
CVSSv3.1 base score of 7.5 is calculated given the CVSS vector
(AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H). The formulas to calculate
the base and temporal CVSS scores can be found in [35]. Note that
while the current version of CVSS score is v3.1, many vulnerability
reports still use v2 and v3.0. Despite this, both v3.1 and v3.0 share
the same CVSS metrics and score calculation formula. However,
v3.1 provides additional assessment guidance by updating the CVSS
document specification.
Vulnerability profiling standard. According to CNA [33], to re-
quest an identifier for a newly-found vulnerability, certain informa-
tion is required, such as the vulnerability type, vendor, and affected
equipment. Additional information, such as impact, attack patterns,
and discoverer, are also encouraged. In our research, we refer to
these required and encouraged pieces of information as profiling
artifacts (i.e., vendor, affected equipment, weakness, etc.). Other
vulnerability artifacts like CVSS score, CVSS vector are considered
as non-profiling artifacts. In our proposed system, the profiling arti-
facts are emphasized in a mandatory way by a partitioned attention
mechanism during the aggregation of neighborhood information
to update the representation of a target entity (§5.3).

2.2 GNN-based Entity Alignment
Most GNN-based entity alignment methods [45, 68, 95] are subject
to the following framework: (1) a GNN to learn node representa-
tions from graph structure and (2) a margin-based loss to rank the
distance between entity pairs. The loss function

𝐿 =
∑
(𝑖, 𝑗) ∈P

∑
(𝑖′, 𝑗 ′) ∈P−

max
{
d(ℎ𝑖 , ℎ 𝑗 ) − d(ℎ𝑖′, ℎ 𝑗 ′) + 𝛾, 0

}

Figure 1: KG schema. Blue: entities; Yellow: literal artifacts;
Purple: intermediate nodes.

aims at making equivalent entities (𝑖, 𝑗) close to each other while
maximizing the distance between negative pairs (𝑖 ′, 𝑗 ′). Here ℎ𝑖 is
the embedding of entity 𝑖 updated by a GNN layer in the form of:

ℎ𝑙+1𝑖 ← 𝜎

(
Aggregate

[
𝑊 𝑙 · ℎ𝑙

𝑘
,∀𝑘 ∈ (𝑖 ∪ 𝑁𝑖 )

] )
where 𝑁𝑖 is the set of neighboring nodes around node 𝑖 , 𝑊 𝑙 is
the transformation matrix in layer 𝑙 , and 𝜎 is a non-linear acti-
vation function. Instead of𝑊 𝑙 , the relation-aware GNN learns a
specific transformation matrix𝑊 𝑙

𝑟 for each relation 𝑟 . GNN variants
serve the purpose of Aggregate by different operations such as
normalized mean pooling [45] and weighted summation [83]. In
this paper, we proposemasked aggregation and partitioned attention
in Aggregate operation to infuse security domain knowledge into
the learning of entity embeddings.

3 VULNERABILITY KNOWLEDGE BASE
In our study, we first time annotated and released three vulnerability
knowledge graphs (KGs) based on two governmental vulnerabil-
ity repositories, i.e, National Vulnerability Database (NVD) [71]
and ICS-CERT Advisories (ICS-CERT) [16], and one security infor-
mation portal, i.e., SecurityFocus (SF) [14]. Given those vulner-
ability knowledge graphs, we also generated and released two
cybersecurity-domain entity alignment (EA) datasets by linking
entities from ICS-CERT and SecurityFocus to NVD. The annotated
dataset is available at [40]. Note that the crawled data are for infor-
mational purposes only, following all repositories’ terms of service.

Belowwe explain the annotation process of the vulnerability KGs
(§3.1, §3.2) and the EA dataset (§3.3). A quantitative study in §3.4
showing the particularity of the data demonstrates the challenges
of aligning security entities.

3.1 KG schema
We design the vulnerability KG schema by summarizing the com-
mon artifacts and their relations provided by vulnerability reposito-
ries. Table 1 illustrates the common artifacts provided by the three
vulnerability repositories investigated in our study, i.e., NVD, ICS-
CERT and SF. In our study, we selected the vulnerability repository
considering its popularity, vulnerability report format (including
both structure and semi-structure). We also include one vulner-
ability repository which has special focus (i.e., ICS-CERT which
focuses on the vulnerabilities of Industrial Control Systems).

Figure 1 illustrates a general schema (i.e., entity types and rela-
tions) of the proposed security KGs. These vulnerability artifacts
can be interlinked by the concepts in the following standard secu-
rity databases: Common Vulnerabilities and Exposures (CVE) for
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Table 1: Common artifacts provided by security repositories. Profiling artifacts are in bold.

Source
Artifact CVE

CWE CVSS v2&v3 CPE
Impact Discovererweakness cwe-id vector score metric vendor product affected

value version

ICS-CERT ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ✓ ✓ ✓ ✓ ⊕

SF ✓ ⊖ ⊕ ✓ ✓ ✓ ✓ ✓

NVD ✓ ✓ ✓ ⊕ ⊕ ⊕ ✓ ✓ ✓ ✓

† (✓: all reports, ⊕: large fraction of reports, ⊖: small fraction of reports).

descriptions of publicly known vulnerabilities, Common Weakness
Enumeration (CWE) for categorizing software security weaknesses,
Common Platform Enumeration (CPE) for encoding names of IT
products and platforms, and Common Vulnerability Scoring System
(CVSS) for evaluating vulnerability severity.

3.2 KG Construction
For NVD, we construct the vulnerability KG by retrieving vul-
nerability artifacts from an NVD database [63] and linking them
according to our KG schema. For the other two semi-structured vul-
nerability repositories (i.e., ICS-CERT, SF), we collected all available
reports and annotated a subset of them. The annotation process are
detailed as below.
Gazeteer. We build a vocabulary for vulnerability-related artifacts
based on the Common Platform Enumeration (CPE) [32] and the
Common Weakness Enumeration (CWE) [36] to help us recognize
mentions of vulnerability artifacts in text. Specifically, we adopted
the CWE list as a dictionary of weaknesses, and took advantage of
the tree structure to determine whether two vulnerability types are
correlated with each other; and the CPE as a dictionary of vendor,
name, and versions of IT products. In total, the dictionary contains
26,461 product names, 8,738 vendors, and 187,711 versions from
CPE, and 1,029 weaknesses from CWE.
Annotation Process. The entities and relations of vulnerability
KGs are annotated by three cybersecurity-major students using the
qualitative open-coding technique [78]. Specifically, the annotation
standard is summarized through five preliminary rounds of anno-
tation, covering 320 reports. In the first round, annotators discuss
the context and the corresponding data entry of each vulnerabil-
ity artifact in both repositories to summarize a set of patterns to
extract entities and assign relations between them. For example,
SecurityFocus does not provide a specific data entry for the artifact
weakness, while through our observation in the preliminary anno-
tation, we could extract the weakness stack-based buffer overflow
from the text “... is prone to a stack-based buffer overflow vulnera-
bility”. In each following round, annotators resolve disagreements
and refine the patterns. After the adjustment through five rounds,
annotators programmatically parse all reports and manually verify
a subset of them. The three annotators amend the annotation of
each report in this subset, respectively, as shown in Table 21. These
annotations are merged into a final version by majority vote. The
statistics of three vulnerability KGs are shown in Table 3. The data
is released with the consent from all annotators.

1To calculate Fleiss’s kappa, we take triples recognized by three annotators as samples,
and the types of triples (including NotRecognized) as categories.

Table 2: Annotation statistics. The agreement is measured
with Fleiss’s kappa coefficient [55].

Repository # Reports # AnnotatedReports Agreement

ICS-CERT 1,324 1,000 0.824

SecurityFocus 68,785 7,650 0.873

Table 3: Statistics of security KGs. #Vuls represents the num-
ber of vulnerabilities. #Ntypes represents the number of
node types.

Security KG # Nodes # Vuls # Edges # NTypes # Relations

NVD 40,639 12,000 109,812 11 13

ICS-CERT 4,700 1,136 21,996 12 14

SecurityFocus 22,579 6,000 70,488 7 8

3.3 Construction of Alignment Data
We build two alignment datasets (i.e., CERT-NVD, SF-NVD), which
consist of positive and negative alignment pairs. We consider NVD
knowledge graph as the target KG and align the other two. This is
because NVD is the standard database with the highest coverage
of vulnerabilities. Each alignment dataset includes vulnerability
artifacts that are jointly presented by both two KGs, except for the
vulnerability identifiers, i.e., CVE-ID. Records with two and above
missing artifacts are dropped in this process. Here we use the same
data format with public entity alignment dataset [95].

We label the identical entities (i.e., vulnerabilities) in different
sources based on the same reference of common identifiers if they
exist (i.e., CVE-ID, CWE-ID, CPE serial number) and security check-
list references (i.e., hyperlinks of the same vulnerability to the other
repositories) in the NVD database. Table 4 shows the statistics of the
KGs to be aligned, including the number of co-occurred vulnerabil-
ities and artifacts across two KGs and the total number of artifacts.
In our study, we annotate 987 and 5,769 identical vulnerabilities
(i.e., positive alignment pairs) when aligning CERT and NVD, SF
and NVD, respectively. To construct negative alignment pairs, we
randomly sample 10 vulnerabilities from the other vulnerability
repository for each vulnerability in a pair of positive alignments,
resulting in 20 negative alignment pairs corresponding to each pos-
itive alignment pair. In total, the alignment dataset contains 6,756
positive pairs and 13,5120 negative pairs. In our study, we use this
dataset to evaluate CEAM (§6.3).
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Table 4: Statistics of KGs for Alignment. #AlignedEnt and
#SharedArt stand for the number of co-occurred vulnerabilities and
artifacts across two KGs, respectively, #TotalArt stands for the total
number of artifacts among two KGs.

Dataset #AlignedEnt #SharedArt #TotalArt

CERT-NVD 987 514 19,721
SF-NVD 5,769 6,668 56,550

3.4 Findings
Based on the three annotated vulnerability KGs and the associated
two alignment datasets, we conducted a measurement study to
understand the characteristics of those alignment pairs. In our
study, surprisingly, we observe the attribute inconsistency between
positive alignment pairs and artifact similarity between negative
alignment pairs, which is distinct from entity alignment datasets
in other domains [95]. We elaborate our findings as below.
Inconsistencies in positive pairs. We denote that a pair of en-
tities encounters an attribute inconsistency if there is no match
between all of their artifacts of a certain attribute type, e.g., Siemens
and Delta Electronics are considered as inconsistent in the at-
tribute type of Vendor. Here, in our study, a match is defined as
either identical tokens or a substring match. Among all the positive
pairs in our dataset, 56.0% of vulnerability pairs have artifact incon-
sistencies. This is a much higher rate compared to other entity align-
ment datasets such as music and movie datasets [95], where only
8.3% of positive entity pairs face the same problem. These inconsis-
tencies make it challenging for the classifier to accurately identify
positive matches. To address this issue, we propose a masked gate
mechanism that selectively aggregates attribute information from
the neighborhood (see §5.2).
Similarity in negative pairs. We observe that different vulnera-
bilities can be associated with quite many identical artifacts. More
specifically, among all negative pairs in our alignment datasets,
4.04% differ in only one quarter types of artifacts. As a comparison,
with the same negative sampling ratio, only 1.14% negative pairs
in the music dataset in [95] have the same problem. Such circum-
stances make it difficult for the classifier to distinguish different-
but-similar entities. Based on the vulnerability profiling standard
and our observation on the datasets, to distinguish a vulnerability
from a set of known vulnerabilities, at least one of its profiling
artifacts should be different. Therefore, higher attention on the
profiling artifacts helps preserve the distinction between similar en-
tities. Accordingly, in our study, we propose a partitioned attention
mechanism to assign higher importance weights to the profiling
artifacts in a mandatory way.

4 PROBLEM FORMULATION
We represent the security knowledge graph as a heterogeneous
graph𝐺 connecting nodes in typesA by relationsR. We use a set of
nodesV to denote security entities with a mapping𝜓 : V → A to
the entity types. The security KG is modeled as a set of triples
𝐺 (V,A,R) = {𝑡 |𝑡 : (𝑖, 𝑟 , 𝑗), 𝑖, 𝑗 ∈ V, 𝑟 ∈ R}. A triple 𝑡 de-
scribes the relation (i.e., edge) between the subject and the object
(i.e., nodes). For example, the triple (CVE-2021-40142, reported_by,

Siemens) represents the fact that Siemens is the discoverer of the
vulnerability identified by CVE-2021-40142. Entity types and rela-
tions are aligned in advance: for a certain 𝐺∗, its entity types A∗
and relations R∗ are aligned to the KG schema in §3.1 during KG
construction.
Security entity alignment. Given a source knowledge graph
𝐺 (V, A,R) and a target knowledge graph 𝐺 ′(V ′,A ′,R ′), entity
alignment aims at finding the identical target entity 𝑣 ′ ∈ V ′ for
each source entity 𝑣 ∈ V . However, in the security domain, only a
few entities on one KG has the same real-world reference on an-
other. Therefore, we define the security entity alignment problem as
follows: Given a set of entity pairs 𝑆 = {(𝑣𝑠 , 𝑣 ′𝑠 ) ∈ V𝑠 ×V ′𝑠 ,V𝑠 ⊂
V,V ′𝑠 ⊂ V ′} between two knowledge graphs 𝐺 and 𝐺 ′, security
entity alignment aims to determine whether each entity pair in
{(𝑣𝑖 , 𝑣 ′𝑖 ) ∈ (V ×V

′) \ 𝑆} refer to the same real word objects with
high precision and recall.

5 CEAM: DESIGN AND METHODOLOGY
5.1 Overview
CEAM applies a joint GNN framework to address the security en-
tity alignment problem. CEAM consists of a 2-layer GNN along
with masked, attentional aggregation that embeds structural infor-
mation into node representation and a classifier that makes the
alignment decision according to node distance. As in [95], we model
the security entity alignment as a binary classification problem on
a given set of positive and negative entity pairs. The entire model
is jointly trained by the cross entropy loss: 𝐿 = − 1

𝑁

∑
𝑖 [𝑦𝑖 log 𝑝𝑖 +

(1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 )], where 𝑦𝑖 labels whether the two entities in
pair 𝑖 refer to the same object.
Architecture. Figure 2 shows the architecture of CEAM. The nodes
are initialized with their textural representations (i.e., blue grids
on Figure 2). The GNNs for graph 𝐺 and graph 𝐺 ′ share the same
transformation matrix to calculate the hidden representation of
each node (i.e., green grids on Figure 2). Then CEAM calculates
node-level attention for each relation, according to the interactions
between the hidden representation of the centering node (on the
top of Figure 2) and its neighboring nodes (on the bottom of Fig-
ure 2). Each relation is then represented by the weighted sum of
the hidden representation of all neighboring nodes connected with
the centering node by this relation (i.e., yellow grids on Figure 2).

To aggregate selective artifact information to learn the semantic
embeddings for vulnerability entities and also using the structural
information of the vulnerability KG, a mask gate is calculated for
each relation representation, based on the cross-graph similarity
between centering nodes with joint neighbors (§5.2), and a relation-
level attention, namely partitioned attention, is calculated based
on both relation type and the importance of the neighboring node
connected by this relation. The neighborhood representation of
the centering node is the weighted sum with the partitioned atten-
tion after an element-wise production between the mask gate and
the relation representation. The centering node representation is
finally updated as the concatenation of its hidden representation
and neighborhood representation (§5.3).

To determine whether a pair of nodes (𝑖, 𝑖 ′) refer to the same en-
tity, CEAM considers 𝑖 and 𝑖 ′ as the centering node to update their
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Figure 2: Architecture of CEAM.

representations and send the difference between their representa-
tions to the binary classifier to make the alignment decision. To add
new entries to a KG, for those with CVE-ID, CEAM uses CVE-ID to
identify vulnerabilities in other repositories for positive pairs and
generates negative pairs for misaligned entries. It then calculates
the loss and gradients on these pairs to update the alignment model
through backpropagation. For entries without CVE-ID, CEAM au-
tomatically tests alignment with other vulnerabilities using the
trained model.
Example. We showcase an intuitive example to explain the pro-
posed alignment mechanism. Considering three vulnerabilities 𝐴
from ICS-CERT Advisory, 𝐴′ and 𝐵′ from NVD. To align 𝐴 and
𝐴′, CEAM initializes GNNs with the textual representation of the
associated vulnerability artifacts, and computes the representation
of each relation by aggregating the artifact representation in this
type.𝐴 shares the same relation representation with𝐴′ in weakness
and impact. However, the product relation of 𝐴 only contains the
information of Entelibus, while the product relation of 𝐴′ con-
tains both the information of Entelibus and Entelibus firmware.
This might hinder the classifier to make a positive alignment deci-
sion, while CEAM addresses this issue by a mask mechanism (§5.2).
Since 𝐴′ is the most similar entity with 𝐴 among all entities in
NVD, the parts in 𝐴’s product representation which are different
with 𝐴′’s product representation will be masked. Also, since 𝐴 is
the most similar entity with 𝐴′ among all entities in ICS-CERT, the
parts in𝐴′’s product representation which are different𝐴’s product
representation will be masked too. As a result, both the product
representation of 𝐴 and 𝐴′ will be masked into new, similar feature
vectors in between of 𝐴’s product representation and 𝐴′’s product
representation, which boosts the classifier to make the positive
alignment decision. However, since 𝐴 shares the same vendor, af-
fected product and CVSS vectors with 𝐵′, while the CVSS vectors
of 𝐴 and 𝐴′ are different, the model can mistakenly align 𝐴 to 𝐵′.
To circumvent this case, the partitioned attention mechanism (§5.3)
enhances the importance weight of profiling artifacts (e.g., impact,
weakness) and reduces the importance weight of non-profiling arti-
facts (e.g., CVSS vector) to simultaneously highlight the difference
between (𝐴, 𝐵′) in impact and weakness and weaken the consis-
tence in CVSS vector between (𝐴, 𝐵′) as well as the difference in
CVSS vector between (𝐴,𝐴′).

Application-driven Challenges and Design. In our study, we
observe inconsistencies in vulnerability artifacts for identical vul-
nerabilities across different repositories, and similarities in artifacts
for different vulnerabilities (See §3.4). Inconsistencies in positive
pairs can lead to false negatives in the alignment process. However,
existing entity alignment methods such as [47, 68, 70, 88, 90, 96]
do not address this specific challenge. To overcome this issue, we
propose relaxing the similarity constraints between positive pairs,
while ensuring that no false positives are introduced. To achieve
this, we introduce a masked aggregation mechanism to compute
similar representations for the same vulnerabilities with inconsis-
tent artifacts in different repositories. Specifically, it scales down a
partial representation of the inconsistent relation (e.g., has_product)
for the vulnerabilities, respectively, by multiplying each element
in the representation by a scaling number that ranges from 0 to
1. For an entity 𝑖 on the source KG, if its most similar entity 𝑖 ′

on the target KG has inconsistent representation with 𝑖 , a set of
scaling numbers will be applied to scale down the inconsistent ele-
ments in the representation of 𝑖 . If 𝑖 is also the most similar entity
to 𝑖 ′ from the source KG, then the corresponding elements in the
representation of 𝑖 ′ will also be scaled down. Thus, the distance
between the representations of 𝑖 and 𝑖 ′ will be reduced even with
the inconsistency. However, if 𝑖 is not the most similar entity to 𝑖 ′
from the source KG, then different elements in the representation
of 𝑖 ′ will be scaled down and the distance between 𝑖 and 𝑖 ′ will not
be reduced. This asymmetric mechanism guarantees that masked
aggregation will not result in additional false positives.

Similarities in negative pairs can cause false positives because
different vulnerabilities can be linked by the same artifacts. How-
ever, as we explained in §3.4, the CNA standard requires at least
one profiling artifact to be different in order to identify a new vul-
nerability, while all non-profiling artifacts can remain the same.
Therefore, reducing the influence of non-profiling artifacts in align-
ment can alleviate this issue, but this cannot be guaranteed with
neural networks. Accordingly, we proposed partitioned attention to
reduce the weights of non-profiling artifacts by enforcing that the
sum of weights on profiling relations is fixed to a specific value.

5.2 Masked Attribute Aggregation
We use masked attribute aggregation to represent ID-like entities
from neighborhood literal artifacts. Due to the heterogeneity of
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knowledge graphs, we first aggregate the representation of artifacts
in the same type into relation representation. Further, we use the
similarity between the relations representation of different entities
to calculate the mask, an attribute-level scaling operator for aggre-
gating relation representation into entity representation. The mask
relaxes the similarity constraint of a candidate pair of entities if
they are mutually the most closed ones over the two KGs. Below
we elaborate on the two-stage masked aggregation.
Stage 1: towards relation representation. For node 𝑖 on graph
𝐺 (V,A,R), its corresponding relation 𝑟 is represented as

𝜙𝑖 (𝑟 ) =
∑
𝑗 ∈𝑁𝑖,𝑟

𝛼𝑖𝑟 𝑗𝑊𝑟ℎ 𝑗 ,

where𝑊𝑟 is the transform weight for relation 𝑟 , 𝑁𝑖,𝑟 = { 𝑗 | (𝑖, 𝑟 , 𝑗) ∈
𝐺} represents the neighbors associated with 𝑖 by relation 𝑟 , 𝛼𝑖𝑟 𝑗
characterizing the importance of node 𝑗 to node 𝑖 is the relative
co-occurrence rate of two nodes across two KGs:

𝛼𝑖𝑟 𝑗 =
exp

(
−𝑑 𝑗,𝑟 (𝑑 𝑗,𝑟 + 𝑑 𝑗 ′,𝑟 )−1

)∑
𝑘∈𝑁𝑖,𝑟

exp
(
−𝑑𝑘,𝑟 (𝑑𝑘,𝑟 + 𝑑𝑘′,𝑟 )−1

) ,
where 𝑑 𝑗,𝑟 and 𝑑 𝑗 ′,𝑟 are the number of entities connected to node 𝑗

by relation 𝑟 on graph 𝐺 and 𝐺 ′, respectively.
Such a design aims to emphasize the artifacts that are more rep-

resentative and can boost positive alignment, while the artifacts
connected to more entities on the KG are less specific and repre-
sentative of a certain entity. For example, consider CVE-2013-1676
in NVD, where both Firefox and Firefox ESR (Extended Support
Release) are listed as the affected product. Firefox, associated with
146 CVEs, may not be the most representative artifact to profile
CVE-2013-1676, compared to Firefox ESR, which is only associated
with 2 CVEs. Moreover, to ensure that positive alignments are not
hindered by artifacts that are only available from one repository, it
is crucial to consider emphasizing artifacts from both repositories,
given that different vulnerability repositories may have varying
focuses on vulnerability artifacts. For example, CVE-2016-4529 is
listed with different affected products in NVD and ICS-CERT. NVD
lists SoMachine HVAC, M171, and M172, while ICS-CERT only lists
SoMachine HVAC. Additionally, M171 and M172 are not mentioned
in any other repositories in our study. This discrepancy can make it
challenging to align vulnerabilities in NVD with their correspond-
ing entities in other repositories. To address this issue, it is essential
to emphasize the artifacts that appear in both knowledge graphs,
such as SoMachine HVAC, during the aggregation process.
Stage 2: towards entity representation. By stacking the rela-
tion representation 𝜙𝑖 (𝑟 ), entity 𝑖 is temporarily encoded by the
matrix: Φ𝑖 =

(
𝜙𝑖 (𝑟1)𝑇 , 𝜙𝑖 (𝑟2)𝑇 , ..., 𝜙𝑖 (𝑟 |R |)𝑇

)
. Further, we study a

mask gate that scales the attributes (i.e., features) of the relation
representation during the aggregation. To do this, we consider a
scaling parameter𝑚 for each attribute 𝑡 in the representation of 𝑟 ,
which reflects the confidence that entity 𝑖 possesses the attribute.
We construct a set of candidates C𝑖 = {𝑖 ′ |∃ 𝑗 ∈ (V∩V ′) : (𝑖, 𝑟 , 𝑗) ∈
G ∧ (𝑖 ′, 𝑟 , 𝑗) ∈ G′} for entity 𝑖 . The scaling parameter𝑚𝑡

𝑖,𝑟
is mea-

sured by the consistency of the attribute 𝑡 in the representation of
𝑟 among all candidate pairs {(𝑖, 𝑖 ′)} of 𝑖 ,

𝑚𝑡
𝑖,𝑟 = exp(−

∑
𝑖′∈C𝑖

𝑐𝑖𝑖′ [𝜙𝑡𝑖 (𝑟 ) − 𝜙
𝑡
𝑖′ (𝑟 )]

2),

where𝜙𝑡
𝑖
(𝑟 ) is the value of attribute, 𝑐𝑖𝑖′ = softmax𝑖′∈C𝑖 (−||Φ𝑖 − Φ𝑖′ | |𝐹 )

indicates the correspondence of 𝑖 ′ to 𝑖 . Therefore, for the complete
relation representation 𝜙𝑖 (𝑟 ), we can define the mask gate alto-
gether as a diagonal matrix𝑀𝑟

𝑖
,

𝑀𝑟
𝑖 = exp

(
−

∑
𝑖′

𝑐𝑖𝑖′ · d𝑟 (𝑖, 𝑖 ′)d𝑟 (𝑖, 𝑖 ′)𝑇
)
,

where d𝑟 (𝑖, 𝑖 ′) = 𝜙𝑖 (𝑟 ) − 𝜙𝑖′ (𝑟 ). Finally we have the aggregated
representation of entity 𝑖 as:

ℎ𝑖 =
1
|R |

∑
𝑟

𝑀𝑟
𝑖 𝜙𝑖 (𝑟 ).

The process of mask generation is illustrated in Figure 4 in Ap-
pendix 13.1 . The mask reduces the effect of different attributes
between a candidate pair of entities only if they are mutually the
most closed ones to each other among two KGs; otherwise, the dis-
tance between the masked entity representations will not decrease
since the masks are asymmetric and will scale different attributes
of the two entities. This enables CEAM to achieve high recall while
preserving tolerable precision for security entity alignment.

5.3 GNN with Partitioned Attention
In GNN encoder, we learn transformation matrices𝑊𝑡 for each
entity type and𝑊𝑟 for each relation. As in [95], we calculate the
node-level attention 𝑠 and the relation-level attention 𝛽 to accumu-
late neighborhood information:

𝑧𝑖 =
∑
𝑟

∑
𝑗 ∈𝑁𝑖,𝑟

𝜉𝑖𝑟 𝑗 · 𝛽𝑖𝑟 ·𝑊𝑟ℎ 𝑗 ,

and combines the transformed self information ℎ (𝑙−1)
𝑖

and accumu-
lated neighborhood information 𝑧𝑖 to update entity representation:

ℎ
(𝑙)
𝑖

= 𝜎

(
[𝑊 (𝑙)𝑡 · ℎ (𝑙−1)

𝑖
| |𝑧𝑖 ]

)
.

The node-level attention 𝜉𝑖𝑟 𝑗 is defined as the normalized cosine
similarity between the transformed hidden representations of the
two connected nodes:

𝜉𝑖𝑟 𝑗 = softmax
𝑗 ∈𝑁𝑖,𝑟

(𝑠𝑖𝑟 𝑗 )

𝑠𝑖𝑟 𝑗 = cos_sim <𝑊
(𝑙)
𝑡 ℎ

(𝑙−1)
𝑖

,𝑊
(𝑙)
𝑟 ℎ

(𝑙−1)
𝑗

>,

and the relation-level attention 𝛽𝑖𝑟 is collectively decided by: 1)
whether the relation is predefined as critical, and 2) the similarity
between nodes. We consider the profiling relations 𝑅𝑃 as the set
of relations connecting profiling artifacts (See §2.1) with entities.
Let the profiling ratio 𝜌 =

|𝑅𝑝 |
|𝑅 | be the proportion of the profiling

relations take among all relations. As an example, for entities with
3 profiling relations and 2 non-profiling relations, 𝜌 = 3

2+3 = 0.6.
Accordingly, we define a partisan term 𝛿 with a positive hyper-
parameter 𝜖 where 0 < 𝜖 < 1 − 𝜌 :

𝛿𝑅𝑋
=

{
𝜌 + 𝜖 − 0.5 𝑖 𝑓 𝑅𝑋 = 𝑅𝑃
−𝜌 − 𝜖 + 0.5 𝑖 𝑓 𝑅𝑋 = 𝑅 \ 𝑅𝑃

,
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Table 5: Results of Cybersecurity Entity Alignment.

Method CERT-NVD SF-NVD
Pre@Rec=.95 F1 PRAUC Pre@Rec=.95 F1 PRAUC

GCN 0.198 ± .002 0.330 ± .004 0.265 ± .006 0.181 ± .005 0.315 ± .003 0.257 ± .003
GAT 0.201 ± .005 0.340 ± .008 0.357 ± .003 0.195 ± .004 0.328 ± .002 0.321 ± .002

GraphSage 0.179 ± .001 0.327 ± .003 0.303 ± .004 0.163 ± .004 0.284 ± .002 0.275 ± .001
R-GCN 0.361± .003 0.475 ± .003 0.421 ± .005 0.341 ± .002 0.461 ± .003 0.408 ± .002
R-GAT 0.392 ± .004 0.610 ± .002 0.654 ± .003 0.367 ± .003 0.589 ± .005 0.601 ± .004

R-GraphSage 0.290 ± .002 0.450 ± .005 0.413 ± .009 0.305 ± .003 0.436 ± .012 0.401 ± .010

PARIS -.- 0.712 ± .000 0.543 ± .000 -.- 0.640 ± .000 0.458 ± .000
PRASE(BootEA) -.- 0.731 ± .000 0.576 ± .000 -.- 0.685 ± .000 0.524 ± .000
PRASE(MultiKE) -.- 0.706 ± .000 0.512 ± .000 -.- 0.639 ± .000 0.472 ± .000
CGMuAlign 0.470 ± .026 0.761 ± .012 0.720 ± .003 0.457 ± .012 0.712 ± .015 0.683 ± .006

CEAM 0.778 ± .015 0.843 ± .015 0.875 ± .002 0.725 ± .006 0.801 ± .013 0.811 ± .003

where 𝑅𝑋 represents the profiling or non-profiling relations. And
the attention weight for 𝑟 ∈ 𝑅𝑋 is

𝛽𝑖𝑟 = ( 1
2
+ 𝛿𝑅𝑋

) softmax
𝑟 ∈𝑅𝑋

©­«|𝑁𝑖,𝑟 |−1
∑
𝑗 ∈𝑁𝑖,𝑟

𝑠𝑖𝑟 𝑗
ª®¬ ,

Such a mechanism ensures that critical relations (e.g., affected
products, etc.) suggested by vulnerability profiling standards are em-
phasized while reserving the relative importance within a relation
group (i.e., profiling or non-profiling). Compared with a brute-force
usage of profiling artifacts only, the partitioned mechanism enables
full exploitation of artifact information by a soft-version emphasis
on the profiling artifacts, where the degree of the emphasis is inten-
sified when the value of 𝜖 increases. Experiments (see § 6.5) show
that the partitioned attention mechanism outperforms traditional
attention mechanisms. Also, the non-profiling artifacts, though
optionally required by CNAs when CVE-ID requested for newly
discovered vulnerability, still provide informative knowledge to the
alignment, and the model performance decreases either when the
value of 𝜖 is too high or too low.

6 EVALUATION AND EXPERIMENTS
This section reports our evaluation study on CEAM to understand
its effectiveness and performance.

6.1 Experimental Settings
ao ao ao ao aImplementation. We implement CEAM and all GNN-
based variants using Deep Graph Library (DGL) [84] backended on
Pytorch [72] and Python 3.7 [82]. As for the other baseline models,
we adopt the official implementation. To learn the textual represen-
tation of vulnerability artifacts, we train a Word2Vec [49] model us-
ing Gensim [76] with all available reports from ICS-CERT and Secu-
rityFocus. With the learned word embeddings, we use fastText [62]
to encode the textual features of artifact as 100-dimensional vectors,
which are used as the input to all of the GNN-based methods.

We run CEAM on Intel Core i5-3550 3.30GHz 4-Core Processor
with NVIDIA GTX 1070 Ti GPU.
Dataset. In our study, we use two alignment datasets (i.e., CERT-
NVD, SF-NVD) mentioned in §3.3 for model evaluation. For the
alignment targets, i.e., vulnerability entities, we replace the original

CVE-IDs with randomly assigned numerical IDs so entities in a
positive pair are represented by different tokens. For other artifact
entities, we use the textual information as their initial representa-
tions and link them with the vulnerability entities. For example, the
weakness entity, originally identified by CWE-ID (e.g., CWE-121)
is directly referred as its weakness name (e.g., Heap-based Buffer
Overflow). To normalize entity expression, for affected versions we
used a dictionary consisting of 11 patterns to convert expressions
like version 3.1 and prior into ≤ 3.1, and further into a list of
discrete values {1.0, 2.0, 3.0, 3.1} by utilizing all available versions
for a product in CPE entries; and for metric values, we utilized a
list of 23 keywords to map the relevant phrases (e.g., Exploitable
remotely) into the corresponding CVSS metric values (e.g., AV:N).
Evaluationmetrics.We apply threemetrics: Precision@Recall=0.95,
F1, and PRAUC (precision-recall area under curve). For the first
metric, we tune the alignment threshold during testing and report
the highest precision when the recall reaches the given value. The
recall of 0.95 is a desirable value in the security applications [91] to
recover the identities of vulnerabilities missing identifiers, where
the false positives can be excluded through handful manual verifica-
tion. For F1 evaluation we use the decision threshold that achieves
the highest macro F1 during validation.
Hyperparameters.We set the train-test-split rate as 0.25, and use a
5-fold cross validation on the training set to select hyperparameters,
e.g., the learning rate. For each model, we apply a binary search
from 0.001 to 0.1 on the validation set for learning rate selection.
The best learning rate for CERT-NVD dataset and SF-NVD dataset
are 0.02 and 0.025, respectively. The dimension of GNN embeddings
in CEAM and baselines is 64, which achieves the best effectiveness
among 32, 64, 128, and 256. To select the best value of 𝜖 in § 5.2, we
use grid search to tune the value of 𝜖

(1−𝜌) from 0 to 1 with a step
size as 0.1. Here, 𝜌 is the portion of profiling relations among all
relations, and its value for the two alignment datasets (i.e., CERT-
NVD and SF-NVD) are 0.4 and 0.8, respectively. The best value of

𝜖
(1−𝜌) for the two datases are both 0.3.

6.2 Baselines
EAw./o. one-to-one constraint.We compare the proposedmethod
with the following state-of-the art methods: CG-MuAlign [95] fea-
tures a collective GNN framework to align entities in two domains:
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music and movie. It also formalizes the alignment problem as a
classification task on a given set of entity pairs. PARIS [79] is a
conventional method that aligns entities by probabilistic reason-
ing. Several studies [67, 93] have noted that PARIS outperforms
many “advanced” EA models. PRASE [75] is an extension of PARIS,
which incorporates the translation-based EA models to boost the
alignment decisions.
GNN variants. We evaluate the recent GNN models in security
entity alignment, as shown in Table 5. GCN-Align [85] models
structure and attribute embeddings by graph convolutional net-
work. GAT [83] aggregates neighborhood information with multi-
head attention weights generated by a single-layer feedforward
neural network. GraphSage [56] concatenates the aggregated neigh-
borhood representation and the self node representation for the
transformation operation. R-GCN, R-GAT, and R-GraphSage are
the variants of GCN, GAT, and GraphSage which train specific
transformation weights for each relation. We reimplement all of
the GNN variants with DGL [84]. CEAM and all the GNN variants
use the same model structures: 2-layer GNNs following with two
fully-connected layers.

We use the EA datasets in §3.3 to evaluate CEAM, CGMuAlign,
and all GNN variants. For PARIS and PRASE, we generate datasets
with the format in [75]. To ensure the comparability, for the re-
sults of PARIS and PRASE, we only consider the wrong alignments
sampled in our negative pairs (See §3.3) as false positives.

6.3 Effectiveness
Table 5 shows the averaged alignment results of three runs on
the two datasets. Overall, CEAM outperforms all other methods.
CG-MuAlign, which is similar in problem formulation andmodel ar-
chitecture with CEAM, shows the second best result. ()PARIS is less
successful to identify the same entities in security KGs. Compared
with PARIS, PRASE improves 1.9% on averaged F1 by incorporat-
ing translation-based alignment modules, such as BootEA [81] and
MultiKE [59], which align entities based on their knowledge graph
embeddings [65]. Note that CEAM has significantly better per-
formance on Pre@Rec=0.95. This is mainly because the proposed
mechanisms enable CEAM to achieve high recall even with a rather
large decision threshold. In contrast, previous EAmodels attach less
importance to preventing false negatives and the decision threshold
needs be small to achieve high recall, which greatly reduces the
precision. More specifically, CEAM employs masked aggregation to
relax the similarity constraints for positive aligns, which decreases
false negatives to achieve high recall. In the meantime, such relax-
ation is only applied when the two entities are mutually the most
closed candidate to each other, which preserves evidence for neg-
ative aligns to prevent low precision. We observe all models show
higher performance on CERT-NVD dataset than SF-NVD dataset.
The main reason is that SF knowledge graphs provide fewer entity
types and suffer more from sparsity issues.

6.4 Analysis
ComputationCostThe complexity of CEAM is𝑂 ( |V|·𝑁 ·(𝐶+ 𝑆

𝐵
)),

where |V| is the size of the nodes, 𝑁 is the maximum neighborhood
size, 𝐶 is the maximum candidate size, 𝑆 is the training size and
𝐵 is the batch size. The model has 340,309 parameters. Averagely,
each batch of size 128 costs 295.3 ms for training.
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Figure 3: Attention weights of different relations.

Table 6: Analysis of the proposed method.

Method P@R=0.95 F1 PRAUC

w.o. masked aggregation 0.534 0.721 0.718
w.o. mask (=mean aggregate) 0.550 0.772 0.784

w.o. partitioned attention 0.691 0.794 0.815
w.o. non-profiling artifacts 0.675 0.781 0.784

CEAM 0.752 0.822 0.843

Hyperparameter Sensitivity. Partitioned attention enforces that
the sum of weights on profiling relations is fixed to a specific value,
𝜖 + 𝜌 , where 𝜖 > 0 is a hyper-parameter empirically selected by
cross-validation, and 𝜌 is the ratio between the number of profiling
relations (i.e., |𝑅𝑃 |) and the number of all relations (i.e., |𝑅 |). As an
example, for entities with 3 profiling relations and 2 non-profiling
relations, partitioned attention enforces that the sum of weights
on profiling relations to be 0.6 + 𝜖 where 𝜖 is the hyperparameter,
and 𝜌 = |𝑅𝑃 |/|𝑅 | = 0.6. The weights within the profiling relations
are learned through the neural network. We evaluate the hyperpa-
rameter sensitivity of the proposed model by varying the value of
𝜖 and the results are presented in Table 7 in Appendix 13.2.
Justification of Artifacts. We assessed the importance of various
artifact types by examining the attention weights of each relation
computed by the trained alignment model. The computation of the
attention weights depends on the hidden representations of entities
and relations, which means that different vulnerabilities can yield
distinct weights for each relation. To visualize this distribution, we
plotted the attention weights associated with each relation for all
vulnerabilities. For this analysis, we use the CERT-NVD dataset,
which contains more relations than the SF-NVD dataset. Specif-
ically, we display the distribution of 𝛽𝑖,𝑟 for each vulnerability 𝑖 ,
grouped by relation (i.e., type of artifact) 𝑟 in Figure 3. Profiling
relations are depicted by histograms filled with solid colors, while
non-profiling relations are represented by those filled with slashes.
As shown in Figure 3, profiling relations generally have higher
weights than non-profiling relations, indicating their higher im-
portance in aligning vulnerabilities. Among the profiling relations,
Impact has the highest weights, while Affected Version has the
highest weights among the non-profiling relations.

6.5 Ablation Study
We perform an ablation study to gain a better insight into how
the two proposed mechanisms: asymmetric masked aggregation
and partitioned attention affect the effectiveness of CEAM. Table 6
shows the improvement by each proposed mechanism, respectively.
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All the scores are averaged on the two alignment datasets. The
variant without both two mechanisms is equivalent to the baseline
model using R-GAT to train node representations. Overall, CEAM
outperforms baselines by 22.55% F1 score. Below we detail the
quantative improvement by the two proposed mechanisms.
Masked aggregation. The first two rows of Table 6 show the ef-
fectiveness of CEAMwithout the masking mechanism. More specif-
ically, the first row shows the model’s effectiveness without any
information aggregation. This is to initialize the input to GNNs
by the textual embeddings of all vulnerability entities and artifact
entities, where the vulnerability entities are originally represented
by a sequence of randomly generated IDs and the artifact enti-
ties are originally represented by the phrases extracted from the
vulnerability reports. The second row shows the result where the
vulnerability entity representations are initialized as the mean of its
neighboring artifacts. In this case, the importance of each artifact
to the vulnerability entity is equally assigned for the aggregation of
neighborhood information, while the mask mechanism is disabled.
Comparing the first two rows, we observe that the information ag-
gregation boosts the performance by 6.6% in averaged F1 and 1.6%
in averaged Precision@Recall=0.95. This is because the aggregated
representation of the neighborhood is more informative than the
textual representation of a randomly generated ID, as the input to
GNNs. Further, comparing the second and the fifth row, the mask
mechanism improves 5.9% in averaged F1 and 20.2% in averaged
Precision@Recall=0.95. The underlying reason is that the masking
mechanism effectively alleviates the false negatives introduced by
inconsistencies in artifacts of identical vulnerabilities.
Partitioned attention. In the third and fourth row of Table 6, we
present the alignment result using traditional attention mechanism,
where the attention weights between node 𝑖 and node 𝑗 under
relation 𝑟 is computed by 𝛼𝑖𝑟 𝑗 = softmax

𝑟 ∈𝑅,𝑗 ∈𝑁𝑖,𝑟

𝜎

(−→𝑤𝑟
𝑇

[
ℎ𝑖 | |𝑊𝑟ℎ 𝑗

] )
,

and the aggregated neighborhood information is represented as
𝑧𝑖 =

∑
𝑟 ∈𝑅

∑
𝑗 ∈𝑁𝑖,𝑟

𝛼𝑖𝑟 𝑗𝑊𝑟ℎ 𝑗 . Compared with traditional attention
operation on all entity types, the partition mechanism enhances
2.8% averaged F1, since the profiling artifacts are enforced to be em-
phasized to alleviate the noises introduced by non-profiling artifacts.
We also compare the result on dataset that only employs profiling
artifacts while dropping the non-profiling ones. The result shows
that the non-profiling artifacts still provide useful information to
improve 1.3% F1. Upon this comparison, the best solution to deal
with the non-profiling artifacts is to limit their importance with the
proposed partition mechanism, rather than directly dumping them.

7 FINDINGS
Among the 3,546 annotated vulnerabilities in NVD, SF and ICS-
CERT (§3), 52 are released in reports without the identifier. Note
that those vulnerability entities do not appear in the EA datasets for
model training and evaluation since their corresponding NVD vul-
nerabilities are unkown. To find the aligned vulnerabilities for those
without CVE-ID in other vulnerability repositories, we construct
the candidate pairs for the 52 vulnerabilities as described in §5.2
and run CEAM to launch the vulnerability alignment task. Given
the results of CEAM, we manually verify the positive alignments
according to the reference checklist and the artifacts provided from
both sides.

CEAMmakes 39 positive alignments for 32 vulnerabilities, while
the other 20 vulnerabilities are not aligned with any vulnerability
in our knowledge base. We manually checked the 20 vulnerabili-
ties without positive alignment results and cannot find matching
records in our KB, either. For example, ICS Advisory (ICSA-10-313-
01) reports a buffer overflow vulnerability in RealFlex RealWin
versions prior to 2.1.8 (Build 6.1.8), which may result in remote
code executions. We search in our vulnerability knowledge base
and cannot find a vulnerability with the same (or similar) vendor,
affected product, vulnerable functions, weakness, and impact.

Among all 39 positive alignments, 28 are correct and 11 are
false positives. Below we perform case studies of those positive
alignments to discuss the security implications delivered by CEAM,
and also elaborate on the challenges in vulnerability information
alignment across different repositories.
Case Studies. We present a sample of the positive alignment results
made by CEAM and clarify the manual verification process as well
as the evidence we use to justify the correctness of the alignment
decision.

ICS Advisory (ICSA-10-362-01) [8] reports a directory traversal
vulnerability that affects all IntegraXor versions prior to Version 3.6
(Build 4000.0) without CVE-ID. The report describes this vulnerabil-
ity as follows:

“IntegraXor is vulnerable to a directory traversal exploit.
An attacker may add an arbitrary path and file and
read any arbitrary file. This vulnerability is exploitable
from a remote machine. A low level of skill is needed to
exploit this vulnerability.”

This indicates that the vulnerability can be exploited remotely by
appending an arbitrary path via an HTTP URL parameter to read
any arbitrary file, which could lead to data leakage. Besides, to
launch this attack, threat actors can just utilize existing scanners
(e.g., RIPS Scanner [9]) to scan through a directory tree. Hence, a
low level of skill is needed to exploit this vulnerability (i.e., AC:L).
The exploiting characteristics correspond to the CVSS exploitability
metrics metric values of AV:N, which means that this vulnerability
can be exploited remotely.

CEAM aligns this vulnerability to CVE-2010-4598. To check the
correctness of this alignment, we manually check the vulnerability
artifacts associated with CVE-2010-4598 in other repositoreis, i.e.
NVD and SecurityFocus. In NVD, this vulnerability is presented
with the description as:

“Directory traversal vulnerability in Ecava IntegraXor
3.6.4000.0 and earlier allows remote attackers to read
arbitrary files via a .. (dot dot) in the file_name pa-
rameter in an open request.”

SecurityFocus records CVE-2010-4598 as Ecava IntegraXor ‘file_name’
Parameter Directory Traversal Vulnerability with Bugtraq ID 45535,
affected products as Ecava IntegraXor 3.6.4000.0, Ecava IntegraXor
3.5.3900.5, Ecava IntegraXor 3.5.3900.10, and Ecava IntegraXor 3.5.

From the above information, we conclude that the reported vul-
nerability in ICS Advisory (ICSA-10-362-01) shares the same weak-
ness (i.e., directory traversal), affected product (i.e., IntegraXor),
versions (i.e., versions prior to 3.6.4000.0), and parameter file_name
with CVE-2010-4598, which help us to confirm the correctness
of the alignment result. Also, we observe additional evidence in
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CVSS metric values and reference checklists. More specifically, in
NVD, the vulnerability is assigned with a CVSSv2 base score of
5.0 along with a CVSSv2 vector of (AV:N/AC:L/Au:N/C:P/I:N/A:N).
SecurityFocus also assigns the metric value (AV:N) to the vulnera-
bility with the description "Remote:Yes Local:No". These are con-
sistent with the metric values assigned by the ICS advisory re-
port. In addition, by checking the PoC [1] of CVE-2010-4598, we
observed that the PoC is exactly matched to the vulnerability de-
scription in the ICSA-10-362-01, which appending an arbitrary
path ..\boot.ini as a parameter to a HTTP URL http://SERVER:
7131/PROJECT_NAME/open?file_name=.
Falsely aligned vulnerabilities. The falsely aligned vulnerabil-
ities mainly come from the low quality and information incom-
pleteness of the unstructured reports. In addition to the absence
of CVE-IDs, these vulnerabilities are reported without certain ar-
tifacts, such as weakness or affected version. As an instance, ICS
Advisory (ICSA-10-214-01) [2] reports a vulnerability affecting the
Wind River Systems’ VxWorks platform, which is a debug service
enabled by a weak hashing algorithm used in authentication and
may allow an attacker to brute force the password. CEAM aligns
this vulnerability to CVE-2010-2968, which identifies the vulnera-
bility that the FTP daemon in Wind River VxWorks does not close
the TCP connection after a number of failed login attempts, which
makes it easier for remote attackers to obtain access via a brute-
force attack. We carefully check the detailed information of the two
vulnerabilities and find out this is a false positive. CEAM mistak-
enly aligns the two vulnerabilities due to the lack of information
about weakness and affected version, as well as the high similarity
in vendor, affected product, and impact.

The remaining falsely aligned cases mainly result from the high
similarity between candidate entities. For example, CVE-2011-0406
identifies a heap-based buffer overflow vulnerability inHistorySvr.exe
in Wellintech Kingview 6.53 which allows remote attackers to
execute arbitrary code. CVE-2011-4536 identifies a heap-based
buffer overflow in nettransdll.dll in HistorySvr.exe in WellinTech
KingView 6.53 and 65.30.2010.18018 which allows remote attackers
to execute arbitrary code. ICS Advisory (ICSA-11-017-01) [3] re-
ports a heap overflow vulnerability in KingView V6.53 that would
allow a remote attacker to cause the service to crash and arbitrary
code execution. CEAM aligns this vulnerability to both CVE-2011-
0406 and CVE-2011-4536. By checking the information of affected
version, vulnerability function and NVD reference checklists, we
find out CVE-2011-0406 is the right alignment to the vulnerability
in ICS Advisory (ICSA-11-017-01) while CVE-2011-4536 is a wrong
alignment. The main reason is that CVE-2011-4536 and CVE-2011-
0406 have high similarities, especially in profiling artifacts. In our
study, we revealed that the quality and the information complete-
ness of the reports are crucial for the security entity alignment.
Also, artifacts not in the mandatory requirement for requesting
CVE-ID, such as affected versions and vulnerable functions, are
also important to identify the vulnerability entity.

8 APPLICATIONS
In this section, we discuss a few potential applications, which can
be built on CEAM, for the integration and inspection of vulner-
ability intelligence. Particularly, using CEAM, we can seek to a

more comprehensive and credible vulnerability database. Below we
elaborate on the design to (1) supplement vulnerability artifacts
across repositories and (2) debunk erroneous vulnerability artifacts.

Given a new vulnerability repository R with structured or semi-
structured reports, we first programmatically extract the vulnera-
bility artifacts from the reports and construct the knowledge graph
for R, where each vulnerability artifact is represented by its textual
representation. Then we apply CEAM to update the representation
of the vulnerability entities and their artifacts, and align the new
vulnerability entities in R to the ones on our constructed vulnera-
bility knowledge base (§ 3). To constrain the size of the candidates,
we only construct alignment pairs between vulnerabilities with the
same artifacts.

Among all types of vulnerability artifacts, some of them has a
multi-to-one relation to the vulnerabilities (e.g., affected devices
and versions), while others has a one-to-one relation to the vulner-
abilities (e.g., vulnerable function). For example, the Linux kernel
evolves quickly and has a large number of versions and derivatives
such as Android, Ubuntu, Red Hat, and IoT systems. Therefore,
the records for Linux kernel-related vulnerabilities are supposed to
cover the information of these various versions and derivatives [25].
In addition, given a vulnerability and its associated affected device
and version, vendors and CVE maintainers adopt a single CVSS
score for each CVSS vector [34]. Hence, the records for CVSS-
related vulnerability artifacts are supposed to be consistent among
different repositories. We call the artifacts with one-to-one rela-
tion as unique artifacts and the ones with multi-to-one relation as
non-unique artifacts.

By aligning the vulnerabilities from different repositories, we
propose two applications: 1) for non-unique artifacts, we check
whether a repository suffers from information incompleteness and
supplement the missing information by artifacts associated with the
same vulnerability from other repositories; 2) for unique artifacts,
we check whether the artifact recorded in different repositories
are consistent and reveal the inconsistent circumstances. Below
we elaborate on the two applications on the reports associated
with Industrial Control System (ICS) vulnerabilities. In addition
to the reports in our vulnerability knowledge base, we involve
SecurityTracker (SF) [14] and CVERecords [50] as new reposito-
ries. SecurityTracker (ST) [13] is a vulnerability report gathering
platform, which monitors the latest public vulnerability reports
on the Internet and collects around 40K vulnerability reports. In
this application, we fetch 671 ICS device vulnerability reports from
this platform based on the vendor names and affected products we
identified from ICS-CERT Advisories. CVERecords is an enumer-
ation list of security vulnerabilities with textual descriptions. By
applying CEAM, we align the artifacts associated with 2,691 ICS
vulnerabilities from 1,368 ICS-CERT Advisories reports, 1,190 SF
reports, 2,641 NVD reports, 671 ST reports, and 2,656 CVE reports.
Note that here we added vulnerability repositories with a relatively
small size (e.g., ST) or well-structure (e.g., CVE), which are easy for
manually result validation, to demonstrate our applications.
Vulnerability artifact supplementary. We observe critical in-
formation loss (e.g., missing CVSS score, affected version) in the
vulnerability repositories, even for the high-profile ones including
ICS-CERT Advisories and NVD. This has a negative impact on the
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security professionals to assess vulnerability timely and effectively,
given the wide adoption of the vulnerability repositories by security
vendors [74]. The alignment between vulnerabilities enables infor-
mation integration among different repositories, making it possible
to supplement missing vulnerability artifact for each independent
repository. In general, ICS-CERT Advisories deliver the most com-
prehensive information for ICS vulnerabilities. However, we still
observe the absence of critical artifacts. Through the information
integration on 1,368 ICS-CERT Advisories reports, 1,190 SF reports,
2,641 NVD reports, 671 ST reports, and 2,656 CVE reports, we sup-
plement 28 CVE-IDs for ICS-CERT. In addition, we observe that
among the five repositories, SecurityTracker is the only one that
provides CVSS temporal metrics, i.e., Remediation Level (RL) and
Report Confidence (RC). For example, vulnerabilty CVE-2011-3389
is confirmed by the vendor while the solution to fix the vulnerabil-
ity is not available. Such description corresponds to CVSS metric
values of Remediation Level: Unavailable (RL:U) and Report Confi-
dence: Confirmed (RC:C). With these information, we could further
supplement the CVSS temporal score by taking the complementary
metric values and leaving the value of the other metric, i.e., Exploit
Code Maturity (E) as Not Defined (X). By aligning the vulnera-
bilities in SecurityTracker with the ones in other repositories, we
supplement CVSS temporal metric values and scores for 163
vulnerabilities in ICS-CERT Advisories, 159 vulnerabilities in Secu-
rityFocus, and 186 vulnerabilities in NVD and CVERecords with the
corresponding textual descriptions.
Credibility analysis of vulnerability artifacts. Existing vulner-
ability artifacts (e.g., vulnerable function, severity level) in the vul-
nerability report are usually determined manually by vulnerability
assessors. It lacks details for the public to know how such vulner-
ability artifacts were generated. Even worse, a recent study [43]
shows that the procedure of vulnerability assessment is extremely
subjective: 50% of security professionals in the survey mis-scored
vulnerabilities with the same vulnerability reports. In our study, we
observe a vulnerability can be reported and disclosed over multiple
channels, and inconsistent information is common. Current studies
[44, 51, 53, 69] on data quality issues of the public vulnerability
repositories either focus on limited vulnerability artifacts (e.g., vul-
nerable device version [51, 69]) or limited vulnerability repositories
(e.g., only focus on the NVD [44]). Using CEAM, we can system-
atically detect the inconsistency of various kinds of vulnerability
artifacts on a large scale.

More specifically, we measure the inconsistency of those unique
artifacts with one-to-one relations to debunk erroneous artifacts.
Below we demonstrate this application using the artifacts CVSS
vector, CVSS score, and CVSS metric values as an example. Note
that in this application, we aim at revealing the inconsistency for
manual validation, not for automatic vulnerability assessment.
• CVSS score mismatches the assigned CVSS vector. Given a CVSS vec-
tor, a unique CVSS score can be calculated using the score formula
in CVSS specifications [35]. We find that 18 (17 in CVSSv3 and 1 in
CVSSv2) vulnerabilities in ICS-CERT have erroneous CVSS scores,
which are inconsistent with those in other repositories. When man-
ually examining these cases, we found that those CVSS scores
mismatch the assigned CVSS vectors. However, vulnerabilities in
other repositories do not have this issue.

• CVSS vector varies among different sources. The inconsistency of
CVSS vector is measured in the same version of the metrics (either
CVSS v3/3.1 or CVSS v2) and is identified when a vulnerability is
assigned different CVSS vectors. Vulnerabilities in ICS-CERT and
NVD show inconsistency in 182 CVSSv2 vectors and 616 CVSSv3/3.1
vectors, given they are associated with the same affected devices
and versions.
• Inconsistency in CVSS metric values. CVSS metric values encounter
credibility issues when metric values vary between different repos-
itories. In our study, we recognizes 20 vulnerabilities described
as “This Vulnerability Could Be Exploited Remotely" in ICS-CERT
(i.e., AV:N) while as “Remote:No, Local:Yes” (i.e., AV:L) in SF. The
opposite case occurs in 26 vulnerabilities.

9 DISCUSSION
Lesson learned. According to our research, additional artifacts are
found critical to the identification of security vulnerabilities. First,
we observe that critical parameters of vulnerable functions, vulner-
able functions or vulnerable files are essential to profile security
vulnerabilities, which are not required by CNAs when requested
CVE-IDs. The critical parameters are variables that can cause poten-
tial erroneous execution states without security checks [66]. The
vulnerable function refers to the target function of a vulnerability
exploit, and the vulnerable file is a program that loads a vulner-
able function. For example, in the Linux kernel, the size variable
in memcpy() in memcpy.c is a critical parameter that could cause
buffer overflow without a sanity check on the input length. Here,
memcpy() is a vulnerable function, and memcpy.c is a vulnerable
file. Without such information, a newly discovered vulnerability
may be considered a duplication of someone in the existing vulnera-
bility database. For example, CVE-2018-20031 and CVE-2018-20032
describe a denial-of-service vulnerability on FlexNet Publisher ver-
sion 11.16.1.0 and earlier, which allows a remote attacker to send a
combination of messages to lmgrd or the vendor daemon, causing
the heartbeat between lmgrd and the vendor daemon to stop, and
the vendor daemon to shut down. The vulnerability type, vendor,
affected product and versions, and impact of these two different
vulnerabilities are all identical. However, these two vulnerabilities
can be distinguished by the vulnerable function: CVE-2018-20031
is related to message decoding in lmgrd and vendor daemon com-
ponents, while CVE-2018-20032 is related to preemptive item
deletion in lmgrd and vendor daemon components. Without such
information, these two vulnerabilities will be identified as the same
one. Therefore, we encourage CNA to involve vulnerability exploita-
tion related artifacts (i.e., parameters, vulnerable function, vulner-
able file, etc.) in the required information for applying CVE-IDs.

In addition, we observe multiple inconsistencies in weakness of
identical vulnerabilities across vulnerability repositories, some of
which are not in conflict indeed. For example, for vulnerability CVE-
2019-9009, ICS Advisory (ICSA-19-255-05) [12] reports its weakness
as Detection of Error Condition without Action (CWE-390), while
NVD reports its weakness as Improper Handling of Exceptional
Conditions (CWE-755) [11]. The two weaknesses are compatible,
where CWE-390 emphasizes that no actions are taken against a
faulty condition, while CWE-755 focuses more on the incorrect
handles of this exceptional condition. In addition, the official CWE
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lists are presented in tree architecture [37–39], indicating the inclu-
sion relation between different weaknesses from three perspectives:
hardware, software, and research. For these reasons, it is likely that
a vulnerability can be categorized into multiple vulnerability types
(i.e., weakness). Hence, for the sake of information consistency, we
suggest CNAs request the vulnerability discoverers to enumerate
all possible weaknesses when reporting a vulnerability.
Limitations. Our research demonstrates that the proposed domain-
driven mechanisms benefit security entity alignment. Most false
positives are produced in vulnerabilities with similar impacts and
the same other artifacts. The representations of such underlying
different vulnerabilities are very closed, and it’s hard to distinguish
them for all similarity-based alignment methods. Meanwhile, the
false negatives are mainly due to data quality issues such as infor-
mation inconsistency, which is commonly observed in real-world
vulnerability repositories [44, 51, 61]. For example, the affected prod-
uct, vendor, and weakness of CVE-2018-7084 provided by ICS-CERT
and NVD are all different. Although the mask mechanism relaxes
the similarity constraint, CEAM cannot align the two records in this
case with too many profiling artifacts inconsistent. We leave the en-
tity alignment with information quality assessment as future work.
User impact of missing or inconsistent artifacts. As central-
ized and rich information sources, vulnerability repositories play
an essential role in the risk management process. Security ana-
lysts rely heavily on these repositories for manual vulnerability
assessments and prioritization [23]. Commercial vulnerability man-
agement tools [21, 22, 24, 26, 27] also widely utilize these reposi-
tories to automate the scanning and analysis of common vulner-
abilities. For example, PAS Cyber Integrity [26] and Nozomi
networks [24] refer to both NVD and ICS-CERT to automate the
monitoring and evaluation of ICS vulnerabilities. Thus, missing
or inconsistent artifacts in vulnerability repositories may hinder
the vulnerability assessment process. Experts widely agree that
discrepancies in NVD and advisories from vendors make patch
prioritization more difficult [28, 29, 31]. Aligning the vulnerabili-
ties from different repositories mitigates the missing artifacts by
cross-referencing. For example, as we presented in §8, by aligning
SecurityTracker with other repositories, CEAM supplements CVSS
temporal metric values and scores for 163 vulnerabilities in ICS-
CERT, 159 vulnerabilities in SecurityFocus, and 186 vulnerabilities
in NVD and CVERecords. The supplemented artifacts can support
the assessment and prioritization of these critical vulnerabilities in
the customized devices, which may change over the lifetime of the
vulnerabilities. We recognize the need for an in-depth user study
to investigate the impact of missing or inconsistent artifacts on the
usability of vulnerability repositories for end-users. As a result, we
leave it as future work to investigate the impact of the issues we
have identified in this study via a human-subject study.
Mitigation of Inconsistencies. In our study, CEAM reported
2,962 inconsistent artifacts among 2,691 vulnerabilities across vul-
nerability repositories ICS-CERT, NVD, SecurityFocus, and Secu-
rityTracker. The artifact category with the highest number of in-
consistent artifacts is CVSSv3 vector (41.59%), followed by Affected
Version (23.30%), Weakness (19.72%). Notably, a significant portion
of inconsistent artifacts is related to CVSS vector/value (e.g., AV:
N, AV:L), which is assigned based on manual assessment of the

vulnerability severity. This assessment process can be influenced by
a variety of factors such as the assessor’s expertise, configuration
environment, and other contextual factors. To address this issue,
it is essential to conduct vulnerability assessment automatically,
considering the comprehensive factors on the vulnerability and
accounting for its unique environment, context, code, and security
posture. Automatically assessing a vulnerability to obtain credible
vulnerability artifacts is still an open research question, which usu-
ally requests in-depth system analysis. Existing solutions include
DIFFCVSS [86], an automated tool for analyzing CVSS artifacts of a
vulnerability on Linux derivatives and versions. Specifically, given a
Linux vulnerability, DIFFCVSS employs both static program analy-
sis and natural language processing (NLP) to precisely identify and
map Linux functions to CVSS metrics, and match code paths related
to the CVE in both the mainstream version and other derivatives.
Other application domains. The current design of CEAM is for
vulnerability alignment across different vulnerability repositories.
We believe that it will also work well for the vulnerability de-
duplication, which determines whether a newly-coming vulnerabil-
ity report has been disclosed and is under process or not, though
further study and evaluation are certainly needed here. CEAM
automatically aligns the vulnerability in the report with those ex-
isting in the enterprise’s vulnerability databases and eliminates any
duplication. What is less clear is the technique’s effectiveness on
more diverse and less-structured vulnerability artifacts in vulnera-
bility reports, like vulnerability-associated functions system calls
and critical variables across different systems. We will leave it as
our future work. In addition, it will be exciting to see future work
that could consider using CEAM for the correlation of two similar
vulnerabilities to accelerate the vulnerability severity assessment
and remediation. More specifically, with less strict 𝜖 , which looses
the degree of emphasizing the profiling artifacts (see §5.3), CEAM
can output similar vulnerabilities with similar impact. The CVSS
assessment information of one vulnerability can potentially guide
the evaluation of the other.

10 RELATEDWORKS
Graph Entity Alignment. Recent graph entity alignment meth-
ods assume that same entities on different KGs have similar at-
tribute distributions and neighborhood structures. Translation-
based methods [48, 57, 59, 80, 81, 94] use knowledge graph embed-
ding models to generate entity embeddings from triple structures.
On the other hand, GNN-based methods [45, 47, 68, 70, 87, 88, 96]
apply graph convolution operations to utilize neighborhood in-
formation. Additionally, [73] proposes a reinforced training strat-
egy to achieve noise-aware entity alignment, while [90] proposes
topology-invariant gates to dynamically align evolving knowledge
graphs. By applying graph isomorphism, [67] learns a permutation
matrix that transforms one KG to another by reordering the entity
node indices.
Domain-specific entity linking. To disambiguate candidate enti-
ties for a given mentions, [60] utilizes domain information to filter
candidates; [77] designs a probabilistic linking model that combines
the distribution of entities and domains. On the other hand, [64]
proposes entity linking for low-source domains by allowing human
annotators to make corrections on ranked candidate entities for
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eachmention. However, all existing works have overlooked domain-
specific properties while using domain information to constrain
the search space of candidates.
Security-domain entity identification. Cross-platform entity
identification has been studied in the cybersecurity domain to rec-
ognize the same entity in different platforms. For example, [58] and
[89] detect the same code function across multiple platforms such
as x86, ARM, MIPS or different applications, using a graph embed-
ding generation network. [52] identify the same account/member
in different anonymous underground marketplaces by building a
weighted multi-view network based on user relatedness and apply-
ing GCN for node representations. However, unlike these works,
our approach is the first to incorporate security-domain KG prop-
erties (§3.4) into the entity alignment process.

11 CONCLUSION
In this paper, we released the first annotated datasets for cybersecurity-
domain entity alignment, and unveil their characteristics that chal-
lenge the assumption made in traditional entity alignment tasks.
Based on this feature, we propose an entity alignmentmodel, CEAM,
which equips GNN-based entity alignmentmodel with two application-
driven designs, asymmetric masked aggregation and partitioned
attention. Experimental results demonstrate the effectiveness of our
method, which outperforms the state-of-the-art entity alignment
models on the vulnerability alignment task. In addition, two poten-
tial applications of CEAM are discussed, including supplementing
vulnerability artifacts across repositories and debunking erroneous
vulnerability artifacts.
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